• Title/Summary/Keyword: adsorption ammonia

Search Result 139, Processing Time 0.03 seconds

Application of DBD Plasma Catalysis Hybrid Process to remove Organic Acids in Odors (악취물질인 유기산 제거를 위한 DBD 플라즈마 촉매 복합공정의 적용)

  • Hong, Eun-Gi;Suh, Jeong-Min;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1627-1634
    • /
    • 2014
  • Odor control technology include absorption, adsorption, incineration and biological treatments. But, most of processes have some problems such as secondary organic acids discharge at the final odor treatment facility. In order to solve the problems for effective treatment of organic acids in odor, it is necessary to develop a new type advanced odor control technology. Some of the technology are plasma only process and plasma hybrid process as key process of the advanced technology. In this study, odor removal performance was compared DBD(Dielectric Barrier Discharge)plasma process with PCHP(plasma catalysis hybrid process) by gaseous ammonia, formaldehyde and acetic acid. Plasma only process by acetic acid obtained higher treatment efficiency above 90%, and PCHP reached its efficiency up to 96%. Acetic acid is relatively easy pollutant to control its concentration other than sulfur and nitrogen odor compounds, because it has tendency to react with water quickly. To test of the performance of DBD plasma process by applied voltage, the tests were conducted to find the dependence of experimental conditions of the applied voltage at 13 kV and 15 kV separately. With an applied voltage at 15 kV, the treatment efficiency was achieved to more higher than 13 kV from 83% to 99% on ammonia, formaldehyde and acetic acid. It seems to the odor treatment efficiency depends on the applied voltage, temperature, humidity and chemical bonding of odors.

Characterization of V/TiO2 Catalysts for Selective Reduction (V/TiO2 촉매의 선택적 촉매 환원 반응특성 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.512-518
    • /
    • 2008
  • The present work studied the selective catalytic reduction (SCR) of NO to $N_2$ by $NH_3$ over $V/TiO_2$ focusing on NOx control for the stationary sources. The SCR process depends mainly on the catalyst performance. The reaction characteristics of SCR with $V/TiO_2$ catalysts were closely examined at low and high temperature. In addition, adsorption and desorption characteristics of the reactants on the catalyst surface were investigated with ammonia. Seven different $TiO_2$ supports containing the same loading of vanadia were packed in a fixed bed reactor respectively. The interaction between $TiO_2$ and vanadia would form various non-stoichiometric vanadium oxides, and showed different reaction activities. There were optimum calcination temperatures for each samples, indicating different reactivity. It was finally found from the $NH_3-TPD$ test that the SCR activity was nothing to do with $NH_3$ adsorption amount.

Quantum Dot Sensitized Solar Cell Using PbS/ZnO Nanowires (황화납/산화아연 나노선을 이용한 양자점 감응형 태양전지)

  • Kim, Woo-Seok;Yong, Ki-Jung
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.292-296
    • /
    • 2010
  • We fabricated quantum dot sensitized solar cells(QDSSC) using PbS as a sensitizer and measured the solar energy conversion efficiency. After growing ZnO nanowires on the substrate by low temperature ammonia solution reaction, PbS QDs were deposited on ZnO nanowires by SILAR(Successive ionic layer adsorption and reaction) method. The morphology and crystallinity of PbS/ZnO nanowires were studied by SEM and XRD. In this study, the maximum conversion efficiency of QDSSC using PbS was 0.075% at one sun, which was lower than that of QDSSC using other sensitizers. The reasons it showed relatively low efficiency are i) the probability of type-I band gap arrangement between ZnO and PbS, ii) disturbance of electron migration by the various-sized PbS band gap, iii) stability dip by the chemical reaction of PbS QDs with electrolyte. To solve these problems, researches about controlling the size distribution of PbS and new type electrolyte would be needed.

Nano Particle Coatings on α-alumina Powders by a Carbonate Precipitation (Carbonate 침전법을 이용한 α-알루미나의 나노파티클 코팅)

  • Lim, Jong-Min;Kim, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.145-149
    • /
    • 2007
  • Nanocrystalline transient aluminas (${\gamma}$-alumina) were coated on core particles (${\gamma}$-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and ${\gamma}$-alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.

Synthesis of Iron-loaded Zeolites for Removal of Ammonium and Phosphate from Aqueous Solutions

  • Kim, Kwang Soo;Park, Jung O;Nam, Sang Chul
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.267-276
    • /
    • 2013
  • This study presents a comparison of different protocols for the synthesis of iron-loaded zeolites, and the results of their application, as well as that of zeolite-A (Z-A), to the removal of ammonium and phosphate from aqueous media. Zeolites prepared by three methods were evaluated: iron-incorporated zeolites (IIZ), iron-exchanged zeolites (IEZ), and iron-calcined zeolites (ICZ). The optimal iron content for preparing of IIZ, as determined via scanning electron microscopy and X-ray photoelectron spectroscopy analyses, expressed as molar ratio of $SiO_2:Al_2O_3:Fe$, was below 0.05. Ammonia removal revealed that the iron-loaded zeolites have a higher removal capacity than that of Z-A due, not only to ion-exchange phenomena, but also via adsorption. Greater phosphate removal was achieved with IEZ than with ICZ; additionally, no sludge production was observed in this heterogeneous reaction, even though the coagulation process is generally accompanied by the production of a large amount of undesired chemical sludge. This study demonstrates that the developed synthetic iron-loaded zeolites can be applied as a heterogeneous nutrient-removal materials with no sludge production.

Synthesis and Characterization of Calcium Derivative Combined with High-Surface-Area Activated Carbon Composites for Fine Toxic Gas Removal

  • Areerob, Yonrapach;Nguyen, Dinh Cung Tien;Dowla, Biswas Md Rokon;Kim, Hyuk;Cha, Je-Woo;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.473-479
    • /
    • 2018
  • Highly toxic gases such as hydrogen sulfide ($H_2S$), carbon dioxide ($CO_2$), and ammonia ($NH_3$) are generated by both nature and human activities and affect human health. In this research, activated carbon combined with $Ca(OH)_2$ and $CaCO_3$ (AC-CO and AC-CC, respectively) were fabricated and applied in absorbing toxic gases from air pollutants. Activated charcoal powder was compressed in the form of pellets and used in the designated conditions. The optimum operating conditions and material properties, such as adsorption capacity, effect of weight ratio of the mixture, and hardness, have been investigated after combining with the calcium derivative. The good performance exhibited in this study suggests that this material is expected to be an effective and economically viable adsorbent for $NH_3$, $CO_2$, and $H_2S$ removal from the air system.

Physical Propertise of Non-Cement Matrix with Red Mud (레드머드를 혼입한 무시멘트 경화체의 물리적 특성)

  • Kwon, Hyeong-Soon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.93-94
    • /
    • 2023
  • Through the industrial revolution that began in the 18th century, the amount of carbon dioxide in the atmosphere increased rapidly as humans used fossil energy such as coal and oil as fuel for steam engines and factory machines. The amount of carbon dioxide emitted while producing cement, the main material of concrete used in construction, is large enough to account for 5-8% of the world's carbon dioxide emissions. In this study, Non cement-based matrix were used to reduce carbon dioxide emissions from cement production. Red mud is an industrial by-product generated in the manufacturing process of aluminum hydroxide using bauxite, and more than 120 million tons are produced worldwide. In addition, red mud is a porous material that can be physically adsorbed, and causes a photocatalytic reaction of TiO2 to remove harmful substances such as nitrogen oxide formaldehyde in the air and chemically adsorbs ammonia and hydrogen sulfide. Therefore, this study aims to examine the physical properties of the matrix by mixing red mud, an industrial by-product with good adsorption performance, into the Non cement-based matrix.

  • PDF

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.

Effect of Artificial Zeolite on Fermentation and Emission of Ammonia and Methane during Animal Waste Composting (인공제올라이트 처리가 가축분 퇴비의 발효 및 암모니아, 메탄가스 발생에 비치는 영향)

  • Lee, Deog-Bae;Kim, Jong-Gu;Lee, Kyung-Bo;Lee, Sang-Bok;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.361-368
    • /
    • 2000
  • This study was carried out to investigate the influence of artificial zeolite on the change of temperature, gas emission, water content and chemical properties during the composting process with the mixture of animal feces, broken bark and extruded rice hull. Artificial zeolite was added 0, 0.5, 1, 3 and 5% volume of the raw composting material, and proceeded 1.2m every day with mobile stacking escalator. Temperature was increased, and water content was decreased in the composting pile by addition of artificial zeolite. This caused to accelerate decomposition of organic matter during composting. $NH_3$ was emitted the highest at 6th day after stacking, then decreased gradually. And addition of artificial zeolite caused to decrease greatly in $NH_3$ emission from composting pile. As result of this, content of nitrogen in the compost was increased by addition of artificial zeolite. Emission of $CH_4$ was the highest at early stacking stage, and that was decreased drastically at 8th day. Emission of $CH_4$ was also decreased greatly by addition of artificial zeolite at 5th days after stacking. It may be resulted from adsorption of $CH_4$ into the molecular sieve structure of artificial zeolite and low water content by high temperature fermentation.

  • PDF