• Title/Summary/Keyword: adoptive transfer

Search Result 20, Processing Time 0.026 seconds

Targeting the epitope spreader Pep19 by naïve human CD45RA+ regulatory T cells dictates a distinct suppressive T cell fate in a novel form of immunotherapy

  • Kim, Hyun-Joo;Cha, Gil Sun;Joo, Ji-Young;Lee, Juyoun;Kim, Sung-Jo;Lee, Jeongae;Park, So Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.5
    • /
    • pp.292-311
    • /
    • 2017
  • Purpose: Beyond the limited scope of non-specific polyclonal regulatory T cell (Treg)-based immunotherapy, which depends largely on serendipity, the present study explored a target Treg subset appropriate for the delivery of a novel epitope spreader Pep19 antigen as part of a sophisticated form of immunotherapy with defined antigen specificity that induces immune tolerance. Methods: Human polyclonal $CD4^+CD25^+CD127^{lo-}$ Tregs (127-Tregs) and $na\ddot{i}ve$ $CD4^+CD25^+CD45RA^+$ Tregs (45RA-Tregs) were isolated and were stimulated with target peptide 19 (Pep19)-pulsed dendritic cells in a tolerogenic milieu followed by ex vivo expansion. Low-dose interleukin-2 (IL-2) and rapamycin were added to selectively exclude the outgrowth of contaminating effector T cells (Teffs). The following parameters were investigated in the expanded antigen-specific Tregs: the distinct expression of the immunosuppressive Treg marker Foxp3, epigenetic stability (demethylation in the Treg-specific demethylated region), the suppression of Teffs, expression of the homing receptors CD62L/CCR7, and CD95L-mediated apoptosis. The expanded Tregs were adoptively transferred into an $NOD/scid/IL-2R{\gamma}^{-/-}$ mouse model of collagen-induced arthritis. Results: Epitope-spreader Pep19 targeting by 45RA-Tregs led to an outstanding in vitro suppressive T cell fate characterized by robust ex vivo expansion, the salient expression of Foxp3, high epigenetic stability, enhanced T cell suppression, modest expression of CD62L/CCR7, and higher resistance to CD95L-mediated apoptosis. After adoptive transfer, the distinct fate of these T cells demonstrated a potent in vivo immunotherapeutic capability, as indicated by the complete elimination of footpad swelling, prolonged survival, minimal histopathological changes, and preferential localization of $CD4^+CD25^+$ Tregs at the articular joints in a mechanistic and orchestrated way. Conclusions: We propose human $na\ddot{i}ve$ $CD4^+CD25^+CD45RA^+$ Tregs and the epitope spreader Pep19 as cellular and molecular targets for a novel antigen-specific Treg-based vaccination against collagen-induced arthritis.

Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells

  • Lee, Young-Sun;Yi, Hyon-Seung;Suh, Yang-Gun;Byun, Jin-Seok;Eun, Hyuk Soo;Kim, So Yeon;Seo, Wonhyo;Jeong, Jong-Min;Choi, Won-Mook;Kim, Myung-Ho;Kim, Ji Hoon;Park, Keun-Gyu;Jeong, Won-Il
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.998-1006
    • /
    • 2015
  • Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knockout ($Raldh1^{-/-}$), $CCL2^{-/-}$ and $CCR2^{-/-}$ mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-${\gamma}$ in T cells. Moreover, interferon-${\gamma}$ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis.

Stabilized Multi-Channel Adoptive IIR Filters for Active Mufflers (능동머플러를 위한 안정한 다중채널 적응 IIR 필터)

  • Nam, Hyun-Do;Suh, Sung-Dae;Bang, Kyung-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.99-106
    • /
    • 2006
  • In this paper, implementation of active mufflers using multiple channel adaptive IIR filter is presented. Usually, recursive LMS(RLMS) algorithms for adaptive IIR filters are highly efficient than filtered-X LMS(FXLMS) algorithms, when the order of both algorithms are the same. However, RLMS algorithms usually diverge before the algorithms arenot yet converged. So, the prefilters are presented to improve the stability by pulling the poles of feedback control transfer function in the beginning of active noise control and returning the original poles after the filters converge. The engine noises of diesel engine automobiles and gasoline engine automobiles are analyzed and the mathematical model of an active muffler is derived. Computer simulations and experiments are performed to show the effectiveness of the proposed systems.

CD43 Expression Regulated by IL-12 Signaling Is Associated with Survival of CD8 T Cells

  • Lee, Jee-Boong;Chang, Jun
    • IMMUNE NETWORK
    • /
    • v.10 no.5
    • /
    • pp.153-163
    • /
    • 2010
  • Background: In addition to TCR and costimulatory signals, cytokine signals are required for the differentiation of activated CD8 T cells into memory T cells and their survival. Previously, we have shown that IL-12 priming during initial antigenic stimulation significantly enhanced the survival of activated CD8 T cells and increased the memory cell population. In the present study, we analyzed the mechanisms by which IL-12 priming contributes to activation and survival of CD8 T cells. Methods: We observed dramatically decreased expression of CD43 in activated CD8 T cells by IL-12 priming. We purified $CD43^{lo}$ and $CD43^{hi}$ cells after IL-12 priming and analyzed the function and survival of each population both in vivo and in vitro. Results: Compared to $CD43^{hi}$ effector cells, $CD43^{lo}$ effector CD8 T cells exhibited reduced cytolytic activity and lower granzyme B expression but showed increased survival. $CD43^{lo}$ effector CD8 T cells also showed increased in vivo expansion after adoptive transfer and antigen challenge. The enhanced survival of $CD43^{lo}$ CD8 T cells was also partly associated with CD62L expression. Conclusion: We suggest that CD43 expression regulated by IL-12 priming plays an important role in differentiation and survival of CD8 T cells.

Segmented Filamentous Bacteria Induce Divergent Populations of Antigen-Specific CD4 T Cells in the Small Intestine

  • Yi, Jaeu;Jung, Jisun;Han, Daehee;Surh, Charles D.;Lee, You Jeong
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • CD4 T cells differentiate into $ROR{\gamma}t/IL$-17A-expressing cells in the small intestine following colonization by segmented filamentous bacteria (SFB). However, it remains unclear whether SFB-specific CD4 T cells can differentiate directly from naïve precursors, and whether their effector differentiation is solely directed towards the Th17 lineage. In this study, we used adoptive T cell transfer experiments and showed that naïve CD4 T cells can migrate to the small intestinal lamina propria (sLP) and differentiate into effector T cells that synthesize IL-17A in response to SFB colonization. Using single cell RT-PCR analysis, we showed that the progenies of SFB responding T cells are not uniform but composed of transcriptionally divergent populations including Th1, Th17 and follicular helper T cells. We further confirmed this finding using in vitro culture of SFB specific intestinal CD4 T cells in the presence of cognate antigens, which also generated heterogeneous population with similar features. Collectively, these findings indicate that a single species of intestinal bacteria can generate a divergent population of antigen-specific effector CD4 T cells, rather than it provides a cytokine milieu for the development of a particular effector T cell subset.

Prior Exposure of Mice to Fusobacterium Nucleatum Modulates Host Response to Porphyromonas Gingivalis (Fusobacterium nucleatum 1차 면역의 Porphyromonas gingivalis 2차 면역에 대한 숙주반응 조절기능)

  • Son, Han-Yong;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.675-687
    • /
    • 2000
  • Multiple periodontal pathogens sequentially colonize the subgingival niche during the conversion from gingivitis to destructive periodontal disease. An animal model of sequential immunization with key periodontal pathogens has been developed to determine whether T and B lymppocyte effector functions are skewed and fail to protect the host from pathogenic challenge. The present study was performed to evaluate immunomodulatory effect of exposure to Fusobacterium nucleatum(F. nucleatum) prior to Porphyromonas gingivalis(P. gingi - valis). Group 1(control) mice were immunized with phosphate-buffered saline, Group 2 were immunized with F. nucleatum prior to P. gingivalis, while Group 3 were immunized P. gingivalis alone. All the T cell clones derived from Group 2 demonstrated type 2 helper T cell clone(Th2 subsets), while those from Group 3 mice demonstrated Th1 subsets. Exposure of mice to F . nucleatum prior to P. gingivalis interfered with opsonophagocytosis function of sera against P. gingivalis. In adoptive T cell transfer experiments, in vivo protective capacity type 2 helper T cell clones(Th2) from Group 2 was significantly lower than type 1 helper T cell clones(Th1) from Group 3 against the lethal dose infection of P. gingivalis. Western blot analysis indicated the different pattern of recognition of P .gingivalis fimbrial proteins between sera from Group 2 and Group 3. In conclusion, these study suggest that colonization of the subgingival niche by F .nucleatum prior to the periodontal pathogen, P. gingivalis, modulates the host immune responses to P. gingivalis at humoral, cellular and molecular levels.

  • PDF

Enforced Expression of CXCR5 Drives T Follicular Regulatory-Like Features in Foxp3+ T Cells

  • Kim, Young Uk;Kim, Byung-Seok;Lim, Hoyong;Wetsel, Rick A.;Chung, Yeonseok
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.130-139
    • /
    • 2017
  • $CXCR5^+$ T follicular helper (Tfh) cells are associated with aberrant autoantibody production in patients with antibody-mediated autoimmune diseases including lupus. Follicular regulatory T (Tfr) cells expressing CXCR5 and Bcl6 have been recently identified as a specialized subset of $Foxp3^+$ regulatory T (Treg) cells that control germinal center reactions. In this study, we show that retroviral transduction of CXCR5 gene in $Foxp3^+$ Treg cells induced a stable expression of functional CXCR5 on their surface. The Cxcr5-transduced Treg cells maintained the expression of Treg cell signature genes and the suppressive activity. The expression of CXCR5 as well as Foxp3 in the transduced Treg cells appeared to be stable in vivo in an adoptive transfer experiment. Moreover, Cxcr5-transduced Treg cells preferentially migrated toward the CXCL13 gradient, leading to an effective suppression of antibody production from B cells stimulated with Tfh cells. Therefore, our results demonstrate that enforced expression of CXCR5 onto Treg cells efficiently induces Tfr cell-like properties, which might be a promising cellular therapeutic approach for the treatment of antibody-mediated autoimmune diseases.

Current Perspectives on Emerging CAR-Treg Cell Therapy: Based on Treg Cell Therapy in Clinical Trials and the Recent Approval of CAR-T Cell Therapy (장기이식 거부반응과 자가면역질환 치료제로서의 CAR Treg 세포치료제의 가능성: Treg 세포치료제 임상시험 현황과 CAR T 세포치료제 허가 정보를 바탕으로)

  • Kang, Koeun;Chung, Junho;Yang, Jaeseok;Kim, Hyori
    • Korean Journal of Transplantation
    • /
    • v.31 no.4
    • /
    • pp.157-169
    • /
    • 2017
  • Regulatory T cells (Treg) naturally rein in immune attacks, and they can inhibit rejection of transplanted organs and even reverse the progression of autoimmune diseases in mice. The initial safety trials of Treg against graft-versus-host disease (GVHD) provided evidence that the adoptive transfer of Treg is safe and capable of limiting disease progression. Supported by such evidence, numerous clinical trials have been actively investigating the efficacy of Treg targeting autoimmune diseases, type I diabetes, and organ transplant rejection, including kidney and liver. The limited quantity of Treg cells harvested from peripheral blood and subsequent in vitro culture have posed a great challenge to large-scale clinical application of Treg; nevertheless, the concept of CAR (chimeric antigen receptor)-Treg has emerged as a potential resolution to the problem. Recently, two CAR-T therapies, tisagenlecleucel and axicabtagene ciloleucel, were approved by the US FDA for the treatment of refractory or recurrent acute lymhoblastic leukemia. This approval could serve as a guideline for the production protocols for other genetically engineered T cells for clinical use as well. The phase I and II clinical trials of these agents has demonstrated that genetically engineered and antigen-targeting T cells are safe and efficacious in humans. In conclusion, both the promising results of Treg cell therapy from the clinical studies and the recent FDA approval of CAR-T therapies are paving the way for CAR-Treg therapy in clinical use.

Multiple Cytotoxic Factors Involved in IL-21 Enhanced Antitumor Function of CIK Cells Signaled through STAT-3 and STAT5b Pathways

  • Rajbhandary, S.;Zhao, Ming-Feng;Zhao, Nan;Lu, Wen-Yi;Zhu, Hai-Bo;Xiao, Xia;Deng, Qi;Li, Yu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5825-5831
    • /
    • 2013
  • Background/Objectives: Maintenance of cellular function in culture is vital for transfer and development following adoptive immunotherapy. Dual properties of IL-21 in activating T cells and reducing activation induced cell death led us to explore the mechanism of action of IL-21 enhanced proliferation and cytotoxic potential of CIK cells. Method: CIK cells cultured from PBMCs of healthy subjects were stimulated with IL-21 and cellular viability and cytotoxicity to K562 cells were measured. To elucidate the mechanism of action of IL-21, mRNA expression of cytotoxic factors was assessed by RT-PCR and protein expression of significantly important cytotoxic factors and cytokine secretion were determined through flow cytometry and ELISA. Western blotting was performed to check the involvement of the JAK/STAT pathway following stimulation. Results: We found that IL-21 did not enhance in vitro proliferation of CIK cells, but did increase the number of cells expressing the CD3+/CD56+ phenotype. Cytotoxic potential was increased with corresponding increase in perforin ($0.9831{\pm}0.1265$ to $0.7592{\pm}0.1457$), granzyme B ($0.4084{\pm}0.1589$ to $0.7319{\pm}0.1639$) and FasL ($0.4015{\pm}0.2842$ to $0.7381{\pm}0.2568$). Interferon gamma and TNF-alpha were noted to increase ($25.8{\pm}6.1ng/L$ to $56.0{\pm}2.3ng/L$; and $5.64{\pm}0.61{\mu}g/L$ to $15.14{\pm}0.93{\mu}g/L$, respectively) while no significant differences were observed in the expression of granzyme A, TNF-alpha and NKG2D, and NKG2D. We further affirmed that IL-21 signals through the STAT-3 and STAT-5b signaling pathway in the CIK cell pool. Conclusion: IL-21 enhances cytotoxic potential of CIK cells through increasing expression of perforin, granzyme B, IFN-gamma and TNF-alpha. The effect is brought about by the activation of STAT-3 and STAT-5b proteins.

Generation of $CD2^+CD8^+$ NK Cells from c-$Kit^+$ Bone Marrow Cells in Porcine

  • Lim, Kyu-Hee;Han, Ji-Hui;Roh, Yoon-Seok;Kim, Bum-Seok;Kwon, Jung-Kee;You, Myoung-Jo;Han, Ho-Jae;Ejaz, Sohail;Kang, Chang-Won;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.167-174
    • /
    • 2012
  • Natural killer (NK) cells provide one of the initial barriers of cellular host defense against pathogens, in particular intracellular pathogens. Because bone marrow-derived hematopoietic stem cells (HSCs), lymphoid protenitors, can give rise to NK cells, NK ontogeny has been considered to be exclusively lymphoid. Here, we show that porcine c-$kit^+$ bone marrow cells (c-$kit^+$ BM cells) develop into NK cells in vitro in the presence of various cytokines [interleukin (IL)-2, IL-7, IL-15, IL-21, stem cell factor (SCF), and fms-like tyrosine kinase-3 ligand (FLT3L)]. Adding hydrocortisone (HDC) and stromal cells greatly increases the frequency of c-$kit^+$ BM cells that give rise to $CD2^+CD8^+$ NK cells. Also, intracellular levels of perforin, granzyme B, and NKG2D were determined by RT-PCR and western blotting analysis. It was found that of perforin, granzyme B, and NKG2D levels significantly were increased in cytokine-stimulated c-$kit^+$ BM cells than those of controls. And, we compared the ability of the cytotoxicity of $CD2^+CD8^+$ NK cells differentiated by cytokines from c-$kit^+$ BM cells against K562 target cells for 28 days. Cytokines-induced NK cells as effector cells were incubated with K562 cells as target in a ratio of 100 : 1 for 4 h once a week. In results, $CD2^+CD8^+$ NK cells induced by cytokines and stromal cells showed a significantly increased cytotoxicity 21 days later. Whereas, our results indicated that c-$kit^+$ BM cells not pretreated with cytokines have lower levels of cytotoxicity. Taken together, this study suggests that cytokines-induced NK cells from porcine c-$kit^+$ BM cells may be used as adoptive transfer therapy if the known obstacles to xenografting (e.g. immune and non-immune problems) were overcome in the future.