• Title/Summary/Keyword: adjacent building

Search Result 348, Processing Time 0.044 seconds

Establishment of the Method for Evaluating the Risk of Fire Spread to the Upper Floors due to Ejected Flame from an Opening in the Building Fires (건축물 화재시 개구분출화염으로 인한 상층부로의 화재확대 위험성평가 방법 구축)

  • Shin, Yi-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.216-217
    • /
    • 2020
  • As the fire inside the building grows rapidly, ejected flame from an opening occurs due to flashover. As a result, the number of cases where the flame spreads to the exterior of the building and rapidly expands to the upper floor is increasing. In particular, in the case of the fire in the Daebong Green Apartment, Uijeongbu in 2015, it was a case where the flame spread to adjacent buildings due to the opening eruption flame from the first ignited building, causing great damage to three apartments. Therefore, this study is to introduce an international standard under development that estimates the shape and properties of the ejected flame from an opening and quantitatively evaluates the radiant heat flux received by the exterior wall of the building by assuming the occurrence of the ejected flame from an opening.

  • PDF

Earthquake-induced pounding between the main buildings of the "Quinto Orazio Flacco" school

  • Fiore, Alessandra;Monaco, Pietro
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.371-390
    • /
    • 2010
  • Historical buildings in seismically active regions are severely damaged by earthquakes, since they certainly were not designed by the original builders to withstand seismic effects. In particular the reports after major ground motions indicate that earthquake-induced pounding between buildings may lead to substantial damage or even collapse of colliding structures. The research on structural pounding during earthquakes has been recently much advanced, although most of the studies are conducted on simplified single degree of freedom systems. In this paper a detailed pounding-involved response analysis of three adjacent structures is performed, concerning the main bodies of the "Quinto Orazio Flacco" school. The construction includes a main masonry building, with an M-shaped plan, and a reinforced concrete building, separated from the masonry one and realized along its free perimeter. By the analysis of the capacity curves obtained by suitable pushover procedures performed separately for each building, it emerges that masonry and reinforced concrete buildings are vulnerable to earthquake-induced structural pounding in the longitudinal direction. In particular, due to the geometric configuration of the school, a special case of impact between the reinforced concrete structure and two parts of the masonry building occurs. In order to evaluate the pounding-involved response of three adjacent structures, in this paper a numerical procedure is proposed, programmed using MATLAB software. Both a non-linear viscoelastic model to simulate impact and an elastic-perfectly plastic approximation of the storey shear force-drift relation are assumed, differently from many commercial softwares which admit just one non-linearity.

Stochastic optimal control of coupled structures

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.669-683
    • /
    • 2003
  • The stochastic optimal nonlinear control of coupled adjacent building structures is studied based on the stochastic dynamical programming principle and the stochastic averaging method. The coupled structures with control devices under random seismic excitation are first condensed to form a reduced-order structural model for the control analysis. The stochastic averaging method is applied to the reduced model to yield stochastic differential equations for structural modal energies as controlled diffusion processes. Then a dynamical programming equation for the energy processes is established based on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control law. The seismic response mitigation of the coupled structures is achieved through the structural energy control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear controlled structural response is predicted by using the stochastic averaging method and compared with the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for coupled adjacent building structures.

Multi-Objective Optimal Distributions of Viscous Dampers for Vibration Control of Adjacent Twin Structures (인접한 쌍둥이 구조물의 진동제어를 위한 점성 감쇠기의 다목적 최적 분포)

  • Ryu, Seonho;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • This study proposes a new vibration control approach for adjacent twin structures, which is termed as viscous damper asymmetric coupling system in this paper. The proposed system takes a concept that the diagonal bracing viscous dampers are asymmetrically distributed in two buildings to break the behavior symmetry of the twin buildings and then the coupling viscous damper is additionally installed at the top floor of the two buildings to couple both buildings and interactively transfer the asymmetric behavior-caused damping forces into both buildings. These asymmetric damping distributions and interacting damping forces of the connection damper efficiently suppress the overall vibration of the damper-coupled adjacent twin buildings efficiently. Genetic algorithm (GA) based multi-objective optimization technique is adopted for optimal design of the proposed system. In the numerical example of adjacent twin 10-story building structures, the conventional control approach, that is, uniform damping distribution system (UDS) is also taken into account for comparison purpose. The optimization results verify that the proposed system either can improve the control performance over the UDS with the same damping capacity, or can save the damping capacity significantly while maintaining the similar level of control performance to the UDS.

Prediction methods on tunnel-excavation induced surface settlement around adjacent building

  • Ding, Zhi;Wei, Xin-jiang;Wei, Gang
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.185-195
    • /
    • 2017
  • With the rapid development of urban underground traffic, the study of soil deformation induced by subway tunnel construction and its settlement prediction are gradually of general concern in engineering circles. The law of soil displacement caused by shield tunnel construction of adjacent buildings is analyzed in this paper. The author holds that ground surface settlement based on the Gauss curve or Peck formula induced by tunnel excavation of adjacent buildings is not reasonable. Integrating existing research accomplishments, the paper proposed that surface settlement presents cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics when the tunnel is respectively under buildings, within the scope of the disturbance and outside the scope of the disturbance. Calculation formulas and parameters on cork distribution curve and skewed distribution curve were put forward. The numerical simulation, experimental comparison and model test analysis show that it is reasonable for surface settlement to present cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics within a certain range. The research findings can be used to make effective prediction of ground surface settlement caused by tunnel construction of adjacent buildings, and to provide theoretical guidance for the design and shield tunnelling.

The seismic reliability of two connected SMRF structures

  • Aval, Seyed Bahram Beheshti;Farrokhi, Amir;Fallah, Ahmad;Tsouvalas, Apostolos
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.151-164
    • /
    • 2017
  • This article aims to investigate the possible retrofitting of a deficient building with soft story failure mode by connecting it to an adjacent building which is designed based on current code with friction dampers at all floors. Low cost and high performance reliability along with significant energy dissipation pertaining to stable hysteretic loops may be considered in order to choose the proper damper for connecting adjacent buildings. After connecting two neighbouring floors by friction dampers, the sliding forces of dampers at various stories are set in two arrangements: uniform sliding force and then variable sliding force. In order to account for the stochastic nature of the seismic events, incremental dynamic analyses are employed prior and after the installation of the friction dampers at the various floors. Based on these results, fragility curves and mean annual rate of exceedance of serviceability and ultimate limit states are obtained. The results of this study show that the collapse mode of the deficient building can affect the optimum arrangement of sliding forces of friction dampers at Collapse Prevention (CP) performance level. In particular, the Immediate Occupancy (IO) performance level is not tangible to the sliding force arrangement and it depends solely on sliding force value. Generally it can be claimed that this rehabilitation scheme can turn the challenge of pounding two adjacent buildings into the opportunity of dissipating a large amount of the seismic input energy by the friction dampers, thus improving significantly the poor seismic performance of the deficient structure.

Model Tests for the Damage Assessment of Adjacent Buildings in Urban Excavation (흙막이굴착에 따른 인접건물의 손상평가에 대한 모형실험연구)

  • Kim, Hak-Moon;Hwang, Eui-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.121-131
    • /
    • 2007
  • This study is to investigate the damage assessment of adjacent structures due to excavation in urban environment. Model tests were carried out for 2 story masonry building and frame structures in various shapes and locations. The damage level of adjacent structures were very differently estimated in accordance with the shape ratio (L/h) of structures, construction stages, and various locations. Therefore the most weak part (bay) of structure must be heavily instrumented and monitored in more details at early stage of constructions. The progressive crack development mechanism at various construction stages was revealed through model tests and crack size indicated more conservative side of damage level on the damage level graph.

A Study of the Daylighting Performance in Obstructed Office Building in Urban Area (오피스 건물에서 인접건물이 자연채광 성능에 미치는 영향)

  • Park, Woong-Kyu;Ki, Hyun-Joo;Jeong, Chan-Woul;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.101-108
    • /
    • 2014
  • The performance of the daylighting in buildings depends on building site and shape. As an energy saving design strategy, daylighting is a key issue in green building design. In this paper, the influence of the adjacent or obstructed building on daylighting performance of the office building in urban area was analyzed. A typical office building about 20 storeys with obstructed buildings has been modeled and simulated using Radiance. The parametric simulations have been performed to analyze the influence of the daylighting performance (illuminance, luminance) of the analyzed office. The results show that the possibility of the glare was decreased when the obstructed building is located in south, also the illuminance level was significantly decreased. When the obstructed building is located in north, the changes of the illuminance level and luminance possibility were somewhat small compared to the unobstructed condition. The daylighting performance of the analyzed building was most affected by the obstructed building in winter season.

Appropriateness Evaluation of Train Vibration Evaluation Method Considering Vibration Levels of Retaining Wall Adjacent to Railway Tunnels (철도터널과 인접한 흙막이 가시설의 진동 수준을 고려한 열차진동 평가방법의 적정성 평가)

  • Donghee Woo;Yeongjin Lee;Yongjae Song;Kangil Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.5-13
    • /
    • 2023
  • With the recent increase in development projects centered on urban areas, the construction of building structures is increasing in areas adjacent to the urban railway operation section. In this case, since ground vibration is generated by the train in operation and affects the adjacent structure, the building structure needs appropriate vibration reduction against train vibration generated at the adjacent location from the desing phase. However, the vibration levels calculated vary depending on the train vibration evaluation method, which means that the implementation of vibration reduction may vary depending on the train vibration evaluation method. Therefore, this study calculated the vibration level according to ground conditions, tunnel depth and separation distance between vibration sources and adjacent structures using numerical analysis and train vibration evaluation methods, and compared them to designning phase. And the appropriate separation distance between the tunnel and the adjacent structure was evaluated by comparing the vibration level with the allowable standards. As a result of the study, the Ungar and Bender evaluation method is evaluated as the most appropriate among the train vibration evaluation methods, and the appropriate separation distance between the tunnel and the adjacent structure is evaluated to be more than 4.5D.

A Study on the Visual Resource Management for Soraksan National Parks and Adjacent Area (국립공원 및 인접지역 경관관리 방안에 관한 연구 - 설악산 국립공원을 중심으로 -)

  • 임승빈;신지훈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.283-292
    • /
    • 1998
  • The purpose of this study is to suggest visual resource management methods for the national parks and adjacent areas, where visual impacts by high rise buildings such as hotel, condominium, etc. become serious problems. In this study Soraksan National Park has been selected as a case study for landscape management planning. The results of this study are as follows: 1) Comprehensive landscape management planning for National Parks and adjacent areas is necessary to solve visual impact problems by high rise buldings such as hotel, condominium, etc. 2) It is suggested to investigate visual resources and conceptual landscape management ideas, to select landscape control points and lines, landscape management areas, and to prepare building height control plan for proper landscape management plan. 3) In case of Soraksan national park, the landscape management plan includes three landscape management areas : Landscape preservation area, General landscape management area, and special landscape management area. 4) In the part of special landscape management area, it is necessary to introduce landscape impact assessment system to more effective landscape management.

  • PDF