• Title/Summary/Keyword: adhesive performance

Search Result 448, Processing Time 0.035 seconds

In-vitro performance and fracture strength of thin monolithic zirconia crowns

  • Weigl, Paul;Sander, Anna;Wu, Yanyun;Felber, Roland;Lauer, Hans-Christoph;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.79-84
    • /
    • 2018
  • PURPOSE. All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS. Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: $5^{\circ}C$ and $55^{\circ}C$, $2{\times}3,000cycles$, 2 min/cycle; ML: 50 N, $1.2{\times}10^6cycles$), while the other samples were stored in water ($37^{\circ}C/24h$). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; ${\alpha}=.05$). The fracture mode was analyzed. RESULTS. In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION. 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application.

Development of Cylindrical Paperpot Manufacturing Equipment (원통형 종이포트 제조장치 개발)

  • Park, Minjung;Lee, Siyoung;Kang, Donghyeon;Kim, Jongkoo;Son, Jinkwan;Yoon, Sung-wook;An, Sewoong
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • This study was conducted to develop a cylindrical paperpot manufacturing equipment which is capable of continuously producing paperpots with a constant size. The equipment consists of the soil supply part, the paper supply part, the pot manufacturing part, the paperpot cutting part and its process for manufacturing paperpot from the soil supply to the paperpot cutting is continuously performed. As a result of the performance test using this equipment, we suggest that the optimal moisture content and injection pressure to supply soil are 50%~60%, and 0.5 Mpa respectively. Moreover the appropriate temperature for adhesive strength is $150{\sim}160^{\circ}C$ taking into account the performance of device and adhesion time. Also, considering the cutting speed and safety, it is appropriate to adopt a straight blade having a clean plan at a minimum angle of $30^{\circ}$. In addition, the manufacturing capacity of the developed equipment was 3300 pots per hour.

Effects of Treatment Methods of Fire-retardant and Layup of Treated Veneers on the Performances of Plywoods (내화약제(耐火藥劑)의 처리방법(處理方法) 및 처리단판(處理單板)의 조판형태(調板形態)가 합판(슴板)의 성능(性能)에 미치는 영향(影響))

  • Son, Jung-Il;Cho, Jae-Sung;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.39-50
    • /
    • 1999
  • This research was carried out to investigate the development of fire-retardancy treatment technology and performance evaluation of fire-retardant treated plywoods. Radiata pine, keruing, dillenia, calophyllum and terminalia veneers were treated by normal(conventional) pressure soak(NPS) and vacuum-pressure-soak(VPS) using 20% water solution of diammonium phosphate. Then, 4.8mm thick, 3ply plywoods were fabricated with combination of fire-retardant treated, untreated or water-immersion types and several composition types of radiata pine and keruing veneers, i,e. the uniform and the mixed types in species composition, and the homogenious and the alternate layer types in veneer treatment. In composed species, the retention and the treatment effects of fire-retardant chemicals III radiata pine was still greater than those of keruing. The effect of VPS treatment was larger than that of NPS treatment, however, adhesive bonding strength and bending strength of plywoods treated by these two methods were not necessarily lowered, compared to those of untreated plywood. And also, fire endurance performance of the urea melamine resin-bonded plywood was greater than that of the phenol resin-bonded plywood. In result, the appropriate combination in veneer species and layer as well as alternate fire-retardant treatments would be more efficiently available in service.

  • PDF

A Study on the Performance Evaluation of Water(wash out) Resistance of 5-Type Repair Materials in Water Leakage of Underground Concrete Structures (지하 콘크리트 구조물 누수부위에 시공되는 5계열 보수재료의 유실 저항 성능 평가 연구)

  • Kim, Soo-Yeon;Yoo, Jae-Yong;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.61-68
    • /
    • 2020
  • In this study, the international standard ISO TS 16774 Part 3 Test Method for Water (wash out) Resistance and KS F 4935 「Sealant Injection type for water leakage maintenance of adhesive flexible rubber asphalt series」, which are standardized as a quality control method of injection type repair materials used for water leakage cracks in underground concrete structures, are currently used in Korea. As a result, considering the performance criteria of "mass change rate -0.1%" stipulated in KS F 4935, the remaining 13 types repair materials, excluding RG-2 of synthetic rubber and UG-1 of urethane, need to be reviewed for stabilization of the loss resistance due to the flow of ground water. The results of this study are determined to be available as a basic indicator for the selection of repair materials used for cracks in concrete structures. In addition, it is expected that the results of this study can be utilized as reference data that can be reflected in the improvement of the quality of repair materials that will be researched and developed later.

Nanostructured energy harvesting devices and their applications for IoT sensor networks (나노구조체 에너지 하베스팅 소자와 IoT 센서 네트워크의 융합 연구)

  • Yoon, Chongsei;Jeon, Buil;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.719-730
    • /
    • 2021
  • We have demonstrated a sandwich-type ZnO-based piezoelectric energy harvesting nanogenerator, namely ZCZ-NG device, composed of symmetrically stacked layers of ZnO/carbon tape/ZnO structure. Especially, we have adopted a conductive double-sided adhesive carbon tape in an effort to fabricate a high-quality ZCZ-NG device, leading to its superior output performance in terms of the peak-to-peak output voltage. Effects of the device size, ZnO layer thickness, and bending strain rate on the device performance have been investigated by measuring the output voltage. Moreover, to evaluate the effectiveness of the fabricated ZCZ-NG devices, we have experimentally implemented a sensor network testbed which can utilize the output voltages of ZCZ-NG devices. This sensor network testbed consists of several components such as Arduino-based transmitter and receiver nodes, wirelessly transmitting the sensed information of each node. We hope that this research combining the ZnO-based energy harvesting devices and IoT sensor networks will contribute to the development of more advanced energy harvester-driven IoT sensor networks in the future.

Mixed Mode Analysis using Two-step Extension Based VCCT in an Inclined Center Crack Repaired by Composite Patching (복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장 가상균열닫힘법을 사용한 혼합모우드해석)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.11-18
    • /
    • 2012
  • This paper deals with the numerical determination of the stress intensity factors of cracked aluminum plates under the mixed mode of $K_I$ and $K_{II}$ in glass-epoxy fiber reinforced composites. For the stress intensity factors, two different models are reviewed such as VCCT and two-step extension method. The p-convergent partial layerwise model is adopted to determine the fracture parameters in terms of energy release rates and stress intensity factors. The p-convergent approach is based on the concept of subparametric element. In assumed displacement field, strain-displacement relations and 3-D constitutive equations of a layer are obtained by combination of 2-D and 1-D higher-order shape functions. In the elements, Lobatto shape functions and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature. Using the models and techniques considered, effects of composite laminate configuration according to inclined angles and adhesive properties on the performance of bonded composite patch are investigated. In addition to these, the out-of-plane bending effect has been investigated across the thickness of patch repaired laminate plates due to the change of neutral axis. The present model provides accuracy and simplicity in terms of stress intensity factors, stress distribution, number of degrees of freedom, and energy release rates as compared with previous works in literatures.

The Physical Properties Analysis of Epoxy Resins Incorporated with Toughening Agents (에폭시 강인성 향상 첨가제의 적용 및 물성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young-IL;Kim, Young Chul;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.101-107
    • /
    • 2015
  • Epoxy resin toughening agents such as core/shell nanoparticles, CTBN epoxy, polyester polyols, and polyurethane have been widely used in order to compensate for the brittleness and improve the impact resistance of the epoxy resin. In this work, a few tougheners mentioned above were individually added into adhesive compositions to observe the effects of physical and mechanical properties. Both flexural strength and flexural modulus were measured with UTM while impact strength was analyzed with Izod impact tester. The obtained results showed that the addition of toughening agents afforded positive performance in terms of flexibility and impact resistance of the cured epoxy resin. Furthermore, DMA experiments suggested that the trends of storage modulus data of each epoxy resin composition coincided with the trends of flexural modulus data. FE-SEM images showed that toughening agents formed circled-shape particles when it was cured in epoxy resin composition at high temperature by phase separation. The existence of particles in the cured samples explains why epoxy resin with toughener has higher impact resistance.

The Effects of Electrodeposited Lead Dioxide Structure on the Ozone Evolution (전착이산화납 결정구조가 전해에 의한 오존발생에 미치는 영향)

  • Kim, In Hwan;Lee, Choong Young;Nam, Chong Woo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.280-288
    • /
    • 1996
  • In the ozone evolution using $PbO_2$, which was electrodeposited on Ti plate at various conditions in electrolyte, the effects of lead dioxide structure on the current efficiency and surface structure changes of lead dioxide were investigated. Also the effects of oxygen transfer reaction on the ozone evolution were investigated by means of a $PbO_2$ electrodeposited on the platinum rotating disk electrode. In order to develope an electrode for ozone evolution, durability of lead dioxide and optimum current density were investigated. At the electrodeposited lead dioxide with the larger grain size and higher crystallinity, the efficiency for ozone evolution was higher. Optimum current density to electrodeposite lead dioxide with large grain size and high crystalinity was $50mA/cm^2$. Lead dioxide deposited in the presence of glycerin showed the best advantage of ozone evolution. Also lead dioxide electrodeposited at less than $10mA/cm^2$ or at more than $100mA/cm^2$ has poor performance of ozone evolution and poor adhesive strength to substrate. In the beginning of ozone evolution, surface structure of lead dioxide was changed and this change resulted in good effects on ozone evolution. Lead dioxide doped with other elements was favorable not to ozone evolution but to oxygen evolution, so it is speculated that ozone evolution has not intermediate stage of oxygen evolution and occurs competitively with oxygen evolution. When ozone was evolved at $0.7{\sim}0.8A/cm^2$, the current efficiency was highest.

  • PDF

Improvement of Durability and Change of Pore Structure for Concrete Surface by the Penetrative Surface Protection Agent (함침계 표면보호제에 의한 콘크리트 표면의 세공구조 변화 및 내구성 향상)

  • Kang, Suk-Pyo;Kim, Jung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.125-132
    • /
    • 2006
  • Recently, surface finishing and protection materials were developed to restore performance of the deteriorated concrete and inhibiting corrosion of the reinforcing-bar. For this purpose, surface protection agent as well as coatings are used. Coatings have the advantage of low Permeability of $CO_2,\;SO_2$ and water. However, for coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, those have a problem with adhesion. On the other hand, surface protection agent penetrates into pore structure in concrete through capillary and cm make a dense micro structure in concrete as a result of filling effect. Furthermore, the chemical reaction between silicate from surface protection agent and cement hydrates can also make a additional hydration product which is ideally compatible with concrete body. The aim of this study is to examine the effect of penetrative surface protection agent(SPA) by evaluating several concrete durability characteristics. The results show that the concrete penetrated surface protection agent exhibited higher durability characteristics for instance, carbonation velocity coefficient, resistance to chemical attack and chloride ion penetration than the plain concrete. These results due to formation of a discontinuous macro-pore system which inhibits deterioration factors of concrete by changed the pore structure(porosity and pore size distributions) of the concrete penetrated surface protection agent.

Performance Improvement of Hydrogenated Bisphenol-A Epoxy Resin/Inorganic Additives Composites for Stone Conservation by Controlling Their Composition (석조문화재 보존을 위한 HBA계 에폭시 수지/무기 첨가물 복합체의 혼합조건에 따른 성능 개선 연구)

  • Choi, Yong Seok;Lee, Jung Hyun;Jeong, Yong Soo;Kang, Yong Soo;Won, Jongok;Kim, Jeong-Jin;Kim, Sa Dug
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.265-276
    • /
    • 2012
  • Physicochemical properties of HBA epoxy resins were controlled by varying hardener mixture and reactive diluent to improve applicability for stone conservation. The epoxy risen comprises hydrogenated Bisphenol-A based epoxide (HBA), fast curing agent (FH), slow curing agent poly(propyleneglycol)bis(2- aminopropylether) (SH) and difunctional polyglycidyl epoxide (DPE). Talc was used as an inorganic additive. The changes in viscosity and temperature during curing reactions depending on the composition of the epoxy resins were investigated. Additionally, bending, tensile and adhesive strengths were measured to identify the effective mechanical strength in stone conservation. Finally various compositions of epoxy resin/inorganic additives were developed for stone conservation by controlling cure kinetics and mechanical properties.