• Title/Summary/Keyword: adhesive binder

Search Result 60, Processing Time 0.193 seconds

Adhesive Strength and Setting Shrinkage of UP Polymer Mortar Intermixed with Waste Rubber Powder (폐고무분말을 혼입한 UP 폴리머모르타르의 경화수축 및 부착강도)

  • Yeon, Kyu-Seok;Jin, Nan-Ji;Choi, Jong-Yun;Beck, Jong-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.383-386
    • /
    • 2003
  • In this study, the MMA-modified paste mixed waste rubber powder, which has a small elastic modulus and a large modification, was produced by using the soft unsaturated polyester resin(UP) as a binder. Then the adhesive properties according to the matrices in both underwater and air-dry conditions and the hardening shrinkage according to the contents of shrinkage reducing agent(SRA) and of MMA were surveyed. The experimental results show that, regardless of humidity of matrices the adhesive strength of polymer concrete was larger than cement concrete. the adhesive strength of MMA content of 20% was larger than MMA content of 30%. regardless of matrix materials the adhesive strength in water condition were $20{\sim}30%$ comparing with the air-dry condition. The case of MMA content of 20% showed the largest adhesive strength. In the hardening shrinkage experiment, the hardening shrinkage reduced as MMA and SRA contents increased, and the decrease of the hardening shrinkage by SRA was larger.

  • PDF

Electric and Mechanical Properties of CMC+PTFE Binary Binder Electrode for Electric Double Layer Capacitor (EDLC용 CMC+PTFE 혼합바인더 전극의 전기적, 기계적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1079-1084
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor. Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability at current densities between 2.5 mA/$\textrm{cm}^2$~100 mA/$\textrm{cm}^2$. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE =60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved.

One-step liquid-phase fabrication of adhesive and protective inorganic layer for carbon nanotube field emitters

  • Jeong, Hae-Deuk;Kim, Ho-Young;Jeong, Hee-Jin;Jeong, Seung-Yol;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.43-43
    • /
    • 2010
  • we have investigated the field emission characteristics of the CNT/TEOS hybrid thin films fabricated by a spray method. It is found that the CNT/TEOS hybrid emitters show high current density, low turn on field, and long-term emission stability compared to the CNT emitters. These efficient field emission characteristics of the CNT/TEOS hybrid emitters are attributed to the TEOS sol, acting as a protection layer of nanotube emitter by surrounding the nanotube tip as well as a binder material to enhance the adhesion of nanotube emitters to the substrate. Therefore, the CNT/TEOS hybrid emitters could be utilized as an alternative for the efficient and reliable field emitters.

  • PDF

Fabrication of CMC+PTFE Electrode and it's Electrochemical Performances (CMC+PTFE 혼합바인더 전극의 제조 및 전기화학적 특성)

  • Kim, Ick-Jun;Lee, Sun-Young;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1248-1253
    • /
    • 2004
  • This work describes the effect of electrode binder on the characteristics of electric double layer capacitor Among carboxymethylcellulose (CMC), Polyvinylpyrrolidone (PVP), Polyvinyl Alcohol (PVA), and Polyvinylidene Fluoride (PVDF), the unit cell using CMC showed good rate capability between $2.5mA/cm^2{\sim}100mA/cm^2$ current density. However, CMC as a binder is incongruent, because the electrode bound with CMC is rigid and easy to crack during a press and winding process for fabrication of capacitor. The unit cell capacitor using the electrode bound with binary binder composed of CMC and Polytetrafluoroethylene (PTFE), especially in composition CMC : PTFE : 60 : 40 wt.%, has exhibited the better mechanical properties than those of the unit cell with CMC. On the other hand, it was also noted that the mechanical properties of CMC+PTFE electrode, coated on underlayer composed of CMC and carbon black, were much improved the binding force.

  • PDF

Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier - (PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 -)

  • Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.112-119
    • /
    • 2010
  • Poly(methyl methacrylate)/poly(butyl acrylate) PMMA/PBA core-shell composite particles were prepared by the emulsion polymerization of MMA and BA in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion and particle size distribution, morphology, average molecular weight distribution, observation of film formation and particle formation, glass transition temperature and physical properties of polymerized core-shell composition particles for using adhesive binder. When the concentration of 0.03 wt% surfactant, the conversions of PMMA and PBA core polymerization are excellent as 95.8% for PMMA core and 92.3% for PBA core. Core-shell composite particles are obtained 90.0% for PMMA/PBA core-shell composite particles and 89.0% for PMMA/PBA core-shell composite particles. It is considered that the core and shell particles are polymerized to be confirmed FT-IR spectra and average molecular weight measured with a GPC, formation of the composite particles is confirmed by the film formation from normal temperature, and composition of inside and outside of the composite particle is confirmed by TEM photograph. The synthesized polymer has two glass transition temperatures, suggesting that the polymer is composed of core polymer and shell polymer unlike general copolymers. It is considered that each core-shell composite particle can be used as a high functionality adhesion binder by the measurement of tensile strength and elongation.

A Consideration on Thermal Stability of the PVAc Latex Adhesive (PVAc 라텍스 접착제의 열적 안정성에 대한 고찰)

  • 권재범;이내우;설수덕
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.81-87
    • /
    • 2003
  • Latex polymers are widely used for adhesive, binder, paint etc. Especially the PVAc(Polyvinyl acetate) latex which manufactured by vinyl acetate and vinyl alcohol as protective colloid is a useful environmentally friendly adhesive. To increase useful property of PVAc latex, this study was carried out for checking thermal characteristics and physical condition of PVAc latex by DSC, FT-IR, Pyrolyzer GC-MS. The activation energies of thermal decomposition for 40, 48, 56, 64% solid content of PVAc latex were found as 28.1-36.0kcal/mol by Kissinger's method and 17.2-22.0kcal/mol by DSC method. Actually, reasonable solid content could be consiered as 56% because of activation energy and adhesive characteristics. According to the effect of protective colloid for 4, 10, 15, 20wt%, the activation energy shows same tendency to both method and in case of l5wt% has been found as the highest activation energy. The mechanism of thermal decomposition was mainly estimated by main chain scission, not by side group on FT-IR analysis. Main component of Pyrolzer GC-MS result were consisted of $CH_3COOH$, $CH_3$, $H_2O$ and light gases(CO, $CO_2$, $CH_4$ etc).

Solid Lubrication Optimization and Structural Design of 17cc Automotive Compressor (17cc급 자동차용 압축기의 고체윤활 최적화 및 구조 설계에 관한 연구)

  • Yang, Yong-Kun;Qin, Zhen;Choi, Yeo-Han;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.56-61
    • /
    • 2020
  • Fuel economy has always been a major issue in the automobile industry, especially owing to the associated environmental concerns. It is widely known that only 5-20% of the energy generated by automobiles running on internal combustion engine engines is used as power, while the rest is consumed because of friction between components. The main components of the reciprocating piston type compressor used in vehicles, such as the shaft, swash plate, piston, and cylinder, cause severe energy loss owing to frictional contact between each other. The wear contact between the main shaft and the other components is particularly severe. Most quality issues arise owing to the sticking phenomenon that occurs between these parts. In this study, a coating solution to reduce friction is prepared by mixing adhesive solid lubricant, organic binder-polyadimide, inorganic binder (Binder), and graphite in four different ratios, and the best combination is determined.

A Fundamental Study for the Efficient Heating System for Warm In-Place Recycling in Korea (국내 현장중온재생공법의 효율적인 가열공정을 위한 기초연구)

  • Kim, Dae-Hun;Kwon, Soo-Ahn;Lee, Jae-Jun
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.29-36
    • /
    • 2016
  • PURPOSES: The objective of this study is to determine the milling temperature that minimizes the binder-induced damage to the aggregate; this is achieved by evaluating the temperature dependence of the viscosity of the asphalt binder, with the aim of developing an effective heating process for warm in-place recycling. METHODS : The validity of the indoor test was confirmed by conducting an internal heating test based on the on-site heating test. In addition, the adhesive power of the binder was measured at various temperatures ($30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$) via three types of measuring methods. RESULTS: The surface temperature spectrum of field test was slight different with that of laboratory test. But, the spectra of inner temperature between the field and the laboratory was almost similar. Also, the adhesion of the asphalt binder was measured from $30^{\circ}C$ to $70^{\circ}C$. The adhesion of the binder was significantly decreased from $60^{\circ}C$. Contrary to other temperature, the adhesion was slightly changed from $60^{\circ}C$ to $70^{\circ}C$. Also the inner temperature between two different heating methods was shown similar temperature spectra. CONCLUSIONS: The pavement heating temperature spectrum of hot in place recycling method was simulated by a laboratory test. Based on this study, the optimum temperature was $60^{\circ}C{\sim}70^{\circ}C$ for reducing aggregate damage during milling process. The susceptibility heating method developed in this study can be maintained the optimum inner temperature range.

Strength Properties of Prepacked Polymer Mortar Using MMA-Based Binders (MMA를 이용한 프리팩트 폴리머 모르터의 강도특성)

  • Yeon, Kyu-Seok;Lee, Hyun-Jong;Ryu, Neung-Hwan;Jin, Xing-Qi;Lee, Chi-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.117-122
    • /
    • 2005
  • Prepacked polymer mortar that is mainly composed of MMA monomer and used for the patching and restoring materials of concrete structures was developed, and its hardening and strength properties were experimentally surveyed. Results of study show that the permeance of binder into the aggregate was excellent for the case of PMMA mixing ratio of below 10%, the surface hardening inferiority was not generated for the case of the ratio of over 5%. Working time of the prepacked polymer mortar and hardening shrinkage tended to decrease as the PMMA mixing ratio increased. On the other hand, the ratio turned out not to decisively affect on compressive and flexural strengths. Regardless of PMMA mixing content, the adhesive strength was about 2.5 MPa. Occurring the desquamation on the substrate of cement concrete showed the adhesive strength of MMA prepact polymer mortar was excellent.

  • PDF

Evaluation of the Performance and Formaldehyde Emission Level of Particleboards Bonded with Urea-Formaldehyde Resins (요소수지로 접착된 파티클보드의 포름알데히드 방산량과 성능평가)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.92-97
    • /
    • 1998
  • Four urea-formaldehyde (UF) resins were synthesized as a particleboard (PB) binder with the four different initial formaldehyde/urea mole ratio and the final mole ratio of 1.15. The UF resins were characterized according to the standard method of resin adhesive analysis. PBs were manufactured using liquid UF resins at 5 minutes press time and 6% resin solids levels on an ovendry particle weight basis. A total of 20 PBs was fabricated for 5 panel replication per UF resin types. The panels were tested for physical strength properties per the procedure ASTM D 1037. The formaldehyde emission levels from the PBs bonded with the UF resins were tested according to 2-hour desiccator test method ASTM D 5582. There were no significant differences among UF resin types for internal bond strength of PBs. But there were significant differences among UF resin types for formaldehyde emission level of PBs. The results showed that the formaldehyde emission level was influenced by the UF resin types without reducing the adhesive performance.

  • PDF