• Title/Summary/Keyword: adhesion process

Search Result 924, Processing Time 0.031 seconds

Fundamental Process Development for Bio-degradable Polymer Deposition and Fabrication of Post Surgical Anti-adhesion Barrier Using the Process (생분해성 고분자 용착을 위한 기반 공정 개발과 이를 이용한 수술 후 유착 방지막의 제작)

  • Park, Suk-Hee;Kim, Hyo-Chan;Kim, Taek-Gyoung;Jung, Hyun-Jeong;Park, Tae-Gwan;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.138-146
    • /
    • 2007
  • Some biodegradable polymers and other materials such as hydrogels have shown the promising potential for surgical applications. Post surgical adhesion caused by the natural consequence of surgical wound healing results in repeated surgery and harmful effects. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall, we developed a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel. It employed a highly accurate three-dimensional positioning system with pressure-controlled syringe to deposit biopolymer solution. The pressure-activated microsyringe was equipped with fine-bore nozzles of various inner-diameters. This process allowed that inner and outer shapes could be controlled arbitrarily when it was applied to a surgical region with arbitrary shapes. In order to fulfill the properties of the ideal barriers f3r preventing postoperative adhesion, we adopted the pre-mentioned method combined with surface modification with the hydrogel coating by which anti-adhesion property was improved.

Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling

  • Kim, Jin-Man;Lee, Kyunghee;Jeong, Daewon
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.230-235
    • /
    • 2018
  • Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin ${\alpha}v{\beta}3$ via "inside-out" and "outside-in" signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin ${\alpha}v{\beta}3$, $PLC{\gamma}$, $PKC{\delta}$, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of $PLC{\gamma}/PKC{\alpha}/RhoA$ signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via $PLC{\gamma}/PKC{\alpha}-PKC{\delta}/RhoA-Rac1$ signaling.

Study on Properties of Self-Assembled Monolayer as Anti-adhesion Layer on Metallic Nano Stamper (금속 나노 스탬퍼 점착방지막으로서의 자기조립 단분자막 특성 연구)

  • 최성우;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.367-370
    • /
    • 2003
  • In this study, application of SAM (self-assembled monolayer) to nano replication process as an anti-adhesion layer was presented to reduce the surface energy between the nano mold and the replicated polymeric nano patterns. The electron beam lithography was used for master nano patterns and the electorforming process was used to fabricate the nickel nano stamper. Alkanethiol SAM as an anti-adhesion layer was deposited on metallic nano stamper using solution deposition method. To analyze wettability and adhesion force of SAM, contact angle and LFM (Lateral Force Microscopy) were measured at the actual processing temperature and pressure for the case of nano compression molding and at the actual UV dose for the case of nano UV molding. It was found that the surface energy due to SAM deposition on the nickel nano stamper markedly decreased and the quality of SAM on the nickel stamper maintained under the actual molding environments.

  • PDF

Surface Preparation and Activation Only by Abrasion and Its Effect on Adhesion Strength

  • Ali Gursel;Salih Yildiz
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • Adhesive joints have many advantages such as weight savings, corrosion and fatigue resistance and now developed even withstand of high impact and dynamic loads. However, an adhesion has cumbersome and complicated surface preparation processes. The surface preparation step is critical in adhesive joint manufacturing in order to obtain the prescribed strength for adhesive joints. In this study, it was attempted to simplify and reduce the number of surface preparation steps, and abrasion and rapid adhesive application (ARAA) process is developed for an alternative solution. The abrasion processes are performed only for creating surface roughness in standard procedures (SP), although the abrasion processes cause surface activation itself. The results showed that there is no need the long procedures in laboratory or chemical agents for adhesion. After the abrasion process, the attracted and highly reactive fresh surface layer obtained, and its effect on bonding success is observed and analyzed in this research, in light of the essential physic and adhesion theories. Al 6061 aluminum adherends and epoxy-based adhesives were chosen for bonding processes, which is mostly used in light vehicle parts. The adherends were cleaned, treated and activated only with abrasion, and after the adhesive application the specimens were tested under quasi-static loading. The satisfied ARAA results were compared with that of the specimens fabricated by the standard procedure (SP) of adhesion processes of high impact loads.

Effect of Vacuum Heat Treatment on the Properties in Thermal Sprayed Ceramics Coating (세라믹스 용사 코팅 특성에 미치는 진공열처리의 영향)

  • Lee, J.I.;Ur, S.C.;Lee, Y.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.98-102
    • /
    • 2000
  • The effect of vacuum heat treatment in the thermal sprayed ceramics coating on a capstan by either high velocity oxygen fuel(HVOF) or plasma thermal spray process was investigated. The coating materials applied on the capstan were tungsten and chrome carbides. In order to characterize the interface between coating layer and bare materials, hardness, adhesion strength, X-ray diffraction(XRD) and microstructural analysis are conducted. The adhesion strength of the carbide coated materials by HVOF process is over 500MPa compared to those of plasma coating process is 230MPa. In case of the carbide coated materials by HVOF process, the adhesion strength is increased to 15MPa and the porosity is reduced under 5% by vacuum heat treatment for 5 hrs at $1000^{\circ}C$. The XRD results reveal that the increasement is believed due to the phase stabilization of metastable $Cr_3C_2$ phase to stable $Cr_{23}C_6$ phase.

  • PDF

Irregular Failures at Metal/polymer Interfaces

  • Lee, Ho-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.347-355
    • /
    • 2003
  • Roughening of metal surfaces frequently enhances the adhesion strength of metals to polymers by mechanical interlocking. When a failure occurs at a roughened metal/polymer interface, the failure prone to be cohesive. In a previous work, an adhesion study on a roughened metal (oxidized copper-based leadframe)/polymer (Epoxy Molding Compound, EMC) interface was carried out, and the correlation between adhesion strength and failure path was investigated. In the present work, an attempt to interpret the failure path was made under the assumption that microvoids are formed in the EMC as well as near the roots of the CuO needles during compression-molding process. A simple adhesion model developed from the theory of fiber reinforcement of composite materials was introduced to explain the adhesion behavior of the oxidized copper-based leadframe/EMC interface and failure path. It is believed that this adhesion model can be used to explain the adhesion behavior of other similarly roughened metal/polymer interfaces.

Adhesion Performance of UV-curable Debonding Acrylic PSAs with Different Thickness in Thin Si-wafer Manufacture Process (박막 실리콘 웨이퍼용 UV 경화형 Debonding 아크릴 점착제의 두께별 접착 물성)

  • Lee, Seung-Woo;Park, Ji-Won;Lee, Suk-Ho;Lee, Yong-Ju;Bae, Kyung-Rul;Kim, Hyun-Joong;Kim, Kyoung-Mahn;Kim, Hyung-Il;Ryu, Jong-Min
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.120-125
    • /
    • 2010
  • UV-curable acrylic Pressure-sensitive adhesives (Acrylic PSAs) are used in many different parts in the world. A wafer manufacture process which is based on semiconductor industry is one thing. We have used acrylic PSAs whose thickness is different from $20{\mu}m$ to $30{\mu}m$ in wafer manufacture process so far. But as wafers become more thinner, acrylic PSAs are supposed to satisfy the requirements such as proper adhesion performance. The main purpose of this research is studying proper adhesion performance and UV-curing behavior of UV-curable acrylic PSAs with very thin thickness and then determining optimized conditions to raise the efficiency of thin wafer production. Acrylic PSAs contain 2-Ethylhexyl Acrylate (2-EHA), Acrylic Acid (AA) and Butyl Acrylate (BA). Ethyl acetate (EtAc) is used as solvent. The acrylic PSAs are obtained using solvent polymerization. Thickness of UV-curable acrylic PSAs is different from $10{\sim}30{\mu}m$. By peel strength and probe tack, adhesion performance and UV curing behavior of acrylic PSA are concerned.

Evaluation for Adhesion Characteristics of UV-curable Bump Shape Stamp for Transfer Process (전사공정을 위한 UV 경화성 범프형 스탬프의 점착특성 평가)

  • Jeong, Yeon-Woo;Kim, Kyung-Shik;Lee, Chung-Woo;Lee, Jae-Hak;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.75-81
    • /
    • 2016
  • Future electronics such as electronic paper and foldable cellphone are required to be flexible and transparent and should have a high performance. In order to fabricate the flexible electronics using flexibility transfer process, techniques for transferring various devices from rigid substrate onto flexible substrate by elastomeric stamp, have been developed. Adhesion between the elastomeric stamp and various devices is crucial for successful transfer process. The adhesion can be controlled by the thickness of the stamp, separation velocity, contact load, and stamp surface treatment. In this study, we fabricated the bump shape stamp consisting of a UV-curable polymer and investigated the effects of curing condition, separation velocity, and contact load on the adhesion characteristics of bumps. The bumps with hemispherical shape were fabricated using a dispensing process, which is one of the ink-jet printing techniques. Curing conditions of the bumps were controlled by the amount of UV irradiation energy. The adhesion characteristics of bumps are evaluated by adhesion test. The results show that the pull-off forces of bumps were increased and decreased as UV irradiation energy increased. For UV irradiation energies of 300 and 500 mJ/cm2, the pull-off forces were increased as the separation velocity increased. The pull-off forces also increased with the increase of contact load. In the case of UV irradiation energy above 600 mJ/cm2, however, the pull-off forces were not changed. Therefore, we believe that the bump shape stamp can be applied to roll-based transfer process and selective transfer process as an elastomeric stamp.

Study on the Effect of Sputtering Process on the Adhesion Strength of CrN Films Synthesized by a Duplex Surface Treatment Process (복합표면처리된 CrN박막의 밀착력에 미치는 스퍼터링 효과에 관한 연구)

  • Kim M.K.;Kim E.Y.;Kim J.T.;Lee S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • In this study, effect of sputtering after plasma nitriding and before PVD coating on the microstucture, microhardness, surface roughness and the adhesion strength of CrN thin films were investigated. Experimental results showed that this sputtering process not only removed surface compound layer which formed during a plasma nitriding process but also induced an alteration of the surface of plasma nitrided substrate in terms of microhardness distribution and surface roughness, which in turn affected the adhesion strength of PVD coatings. After sputtering, microhardness distribution showed general decrease and the surface roughness became increased slightly. The critical shear stress measured from the scratch test on the CrN coatings showed an approximately twice increase in the binding strength through the sputtering prior to the coating and this could be attributed to a complete removal of compound layer from the plasma nitrided surface and to an increase in the surface roughness after sputtering.