• Title/Summary/Keyword: adenosine

Search Result 877, Processing Time 0.034 seconds

Effects of Unilateral Renal Arterial Infusion of Adenosine and Its Analogues on Renal Function in Two-Kidney One Clip Hypertensive Rabbits (신성 고혈압 가토에서 Adenosine 유사체가 신장기능에 미치는 영향)

  • Ma, Jae-Sook;Cho, Kyung-Woo;Kim, Suhn-Hee;Koh, Gou-Young;Seo, Man-Wook
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.145-159
    • /
    • 1990
  • Recently, it has been suggested that the endogenous adenosine may be the mediator for the intercellular communication in the regulation of tubuloglomerular feedback control and renin release. Even though two subclasses of adenosine receptors, A1 and A2, have been described, their functional roles are controversial. The present study was undertaken to clarify the role of adenosine receptors in hypertensive rabbit caused by clamping of renal artery. Experiments were done in two-kidney one clip Goldblatt hypertensive rabbits (2K1GHR) and sham-operated normotensive rabbits. Adenosine, N6-cyclohexyladenosine (CHA) and 5'-N-ethylcarboxamidoadenosine (NECA) were infused into a renal artery. The decreases in urine volume, renal blood flow, glomerular filtration rate and excreted amounts of electrolytes caused by adenosine and CHA were significantly attenuated in 2K1CHR. However, changes in renal function caused by A2 adenosine receptor agonist, NECA, tend to be accentuated in 2K1CHR. These results suggest that the attenuation of renal effect caused by adenosine and A1 adenosine receptor agonist may be due to the modification of adenosine receptor in the kidney in Goldblatt hypertensive rabbits.

  • PDF

Inhibitory action of adenosine on sinus rate in isolated rabbit SA node (토끼 동방결절 박동수에 대한 아데노신의 작용)

  • Chae, Hurn;Suh, Kyung-Phlill;Kim, Ki-Whan
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.199-212
    • /
    • 1983
  • The inhibition/influences of adenine compounds on the heart have been described repeatedly by many investigators, since the first report by Druny and Szent-Gyorgyi [1929]. These studies have shown that adenosine and adenine nucleotides have an over-all effect similar to that of acetylcholine [ACh] by slowing and weakening the heartbeat. The basic cellular and membrane events underlying the inhibitory action of adenosine on sinus rate, however, are not well understood. Furthermore, the physiological role of adenosine in regulation of the heartbeat remains still to be elucidated. Therefore, this study was undertaken in order to examine the response of rabbit SA node to adenosine and to compare the response to that of ACh. Isolated SA node preparation, whole atrial pair, or left atrlal strip was used in each experiment. Action potentials of SA node were recorded through the intracellular glass microelectrodes, which were filled with 3M KCI and had resistance of 30-50 M. All experiments were performed in a bicarbonate-buffered Tyrode solution which was aerated with 3% $CO_2-97%$ $O_2$ gas mixture and kept at $35^{\circ}C$. Spontaneous firing rate of SA node at 35C [Mean + SEM, n=16] was 154 + 3.3 beats/min. The parameters of action potentials were: maximum astolic potential [MDP], -731.7mV: overshoot [OS], 9 + 1.4mV; slope of pacemaker potential [SPP], 94 3.0mV/sec.Adenosine suppressed the firing rate of SA node in a dose dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was potentiated in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine [2mg/l] and propranolol [$5{\times}10^{-6}M$]. ACh [$10^{-6}M$] responses on action potential were similar to those of adenosine by increasing MDP and decreasing SPP. These effects of ACh disappeared by pretreatment of atropine [2mg/1]. Inhibition/effects of adenosine and ACh on sinus rate were enhanced synergistically with the simultaneous administration of adenosine and ACh. Marked decrease of overshoot potential was the most prominent feature on action potential. Dipyridamole [DPM], which is known to block the adenosine transport across cell membrane, definitely potentiated the action of adenosine . Adenosine suppressed the sinus rate and atrial contractility in the same dosage range, even in the reserpinized preparation. Above` results suggest that adenosine suppresses pacemaker activity, like ACh, by acting directly on the membrane of SA node, increasing MDP and decreasing SPP.

  • PDF

Identification of Adenosine 5'-Tetraphosphate in Rabbit Platelets and its Metabolism in Blood

  • Lee, Joong-Woo;Jeon, Sang-Jun;Kong, In-Deok;Jeong, Seong-Woo
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.217-223
    • /
    • 1995
  • Adenosine 5'-tetraphosphate (ATPP) was identified and quantified in extracts of rabbit platelets by elution of extracts containing authentic adenosine 5'-tetraphosphate and comparison of retention time with nucleotide standards using high-performance liquid chromatography technique. The amount of adenosine 5'-tetraphosphate was $0.62\;nmoles/10^{9}$ cells which was 62-fold lower than that of ATP but only 10-fold lower than that of ADP. During platelet aggregation induced by thrombin, adenosine 5'-tetraphosphate was released to a relatively high extent. The degradation rates and halflives of adenosine 5'-tetraphosphate were measured during incubation of platelets in whole blood, erythrocyte suspension and plasma, respectively. The results suggest that plasma contributes more than blood cells to the catabolism of adenosine 5'-tetraphosphate. The pattern of degradation indicates that ATPP may be degraded mainly to AMP by soluble enzymes in plasma and very slowly to ADP and/or AMP by ectoenzymes on blood cells such as erythrocyte. The nature of the enzymes responsible fer the degradation of adenosine 5'-tetraphosphate is yet to be identified.

  • PDF

Receptor Specificity of Adenosine Analogs in Terms of Renal Function and Renin Release (Adenosine 유사체의 신장효과에 미치는 Adenosine 차단제의 영향)

  • Yun, Young-Yi;Koh, Gou-Young;Kim, Suhn-Hee;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.269-280
    • /
    • 1990
  • The purpose of the present experiment was to determine the functional subclassification of renal adenosine receptor fer the hemdynamic, excretory and secretory functions in unanesthetized rabbits. Adenosine antagonist, 8-phenyltheophylline (8-PT) or theophylline, was infused into the left renal artery followed by an infusion of adenosine agonist, cyclohexyladenosine (CHA) or 5'-N-ethylcarboxamidoadenosine (NECA). Intrarenal arterial infusion of CHA or NECA caused decreases in urine volume, glomerular filtration rate, renal plasma flow and excreted amount of electrolytes and renin release in a dose-dependent manner. Dose-response curves in renal function by CHA or NECA was similar and shifted to the right with pretreatment of 8-PT or theophylline. No significant differences in renal response to CHA and NECA in antagonist-treated rabbits were observed. However, the decrease in renin secretion rate was not affected by the adminstration of adenosine antagonists. These results suggest that the renal effect of adenosine receptor agonists appears by way of specific adenosine receptor, but which is not functionally subclassified in the rabbit.

  • PDF

A Study on the Post-Receptor Mechanism of Adenosine Receptor on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 관여하는 Adenosine Receptor의 Post-Receptor 기전에 관한 연구)

  • Choi, Bong-Kyu;Oh, Jae-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.263-272
    • /
    • 1994
  • Since it was been reported that the depolarization-induced ACh release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the ACh release has not been clearly elucidated yet. Therefore, it was attempted to clarify the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of ACh release in this study. Slices from rat hippocampus were equilibrated with $^3H-choline$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $VCm^{-1}$, 2ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $0.3{\sim}300\;{\mu}M$, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. The adenosine effects were significantly inhibited by $DPCPX\;(2\;{\mu}M)$, a selective $A_1-receptor$ antagonist. The responses to N-ethylmaleimide $(10&30{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the adenosine effects were completely abolished by NEM pretreatment. PDB $(1{\sim}10\;{\mu}M)$, a specific protein kinase C (PKC) activator, increased, whereas PMB $(0.03{\sim}1\;mg)$, a PKC inhibitor, decreased the evoked ACh-release, and the adenosine effects were not affected by these agents. Nifedipine $(1\;{\mu}M)$, a $Ca^{2+}\;-channel$ blocker of dihydropyridine analogue, significantly inhibited the adenosine effect, but glibenclamide, a $K^+-channel$ blocker, did not. Finally, 8-bromo cyclic AMP $(100\;&\;300{\mu}M)$, a membrane-permeable analogue of cAMP, did not alter the ACh release, but adenosine effects were inhibited by pretreatment with large dose of 8-br-cAMP $(300\;{\mu}M)$. These results indicate that the decrement of the evoked ACh-release by $A_1-adenosine$ receptor is mediated by the G-protein, and nifedipine-sensitive $Ca^{2+}-channel$ and adenylate cyclase system are coupled partly to this effect, and that protein kinase C and glibenclamide-sensitive $K{^+}-channel$ are not involved in this process.

  • PDF

cAMP-Dependent Signalling is Involved in Adenosine-Stimulated $Cl^-$ Secretion in Rabbit Colon Mucosa

  • Oh, Sae-Ock;Kim, Eui-Yong;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.521-527
    • /
    • 1998
  • An important property of the intestine is the ability to secrete fluid. The intestinal secretion is regulated by a number of substances including vasoactive intestinal peptide (VIP), ATP and different inflammatory mediators. One of the most important secretagogues is adenosine during inflammation. However, the controversy concerning the underlying mechanism of adenosine-stimulated $Cl^-$ secretion in intestinal epithelial cells still continues. To investigate the effect of adenosine on $Cl^-$ secretion and its underlying mechanism in the rabbit colon mucosa, we measured short circuit current ($I_{SC}$) under automatic voltage clamp with DVC-1000 in a modified Ussing chamber. Adenosine, when added to the basolateral side of the muocsa, increased $I_{SC}$ in a dose-dependent manner. The adenosine-stimulated $I_{SC}$ response was abolished when $Cl^-$ in the bath solution was replaced completely with gluconate. In addition, the $I_{SC}$ response was inhibited by a basolateral Na-K-Cl cotransporter blocker, bumetanide, and by apical $Cl^-$ channel blockers, dephenylamine-2-carboxylate (DPC), 5-nitro-2-(3-phenyl-propylamino)-benzoate (NPPB), glibenclamide. Amiloride, an epithelial $Na^+$ channel blocker, and 4,4-diisothiocyanato-stilbene-2,2-disulphonate (DIDS), a $Ca^{2+}-activated$ $Cl^-$ channel blocker, had no effect. In the mucosa pre-stimulated with forskolin, adenosine did not show any additive effect, whereas carbachol resulted in a synergistic potentiation of the $I_{SC}$ response. The adenosine response was inhibited by 10 ${\mu}M$ H-89, an inhibitor of protein kinase A. These results suggest that the adenosine-stimulated $I_{SC}$ response is mediated by basolateral to apical $Cl^-$ secretion through a cAMP-dependent $Cl^-$ channel. The rank order of potencies of adenosine receptor agonists was $5'-(N-ethylcarboxamino)adenosine(NECA)>N^6-(R-phenylisopropyl)adenosine(R-$ PIA)>2-[p-(2-carbonylethyl)-phenyl-ethylamino]-5'-N-ethylcarboxaminoadenosine(CGS21680). From the above results, it can be concluded that adenosine interacts with the $A_{2b}$ adenosine receptor in the rabbit colon mucosa and a cAMP-dependent signalling mechanism underlies the stimulation of $Cl^-$ secretion.

  • PDF

Role of Cordycepin and Adenosine on the Phenotypic Switch of Macrophages via Induced Anti-inflammatory Cytokines

  • Shin, Seul-Mee;Moon, Sun-Hee;Park, Yoon-Hee;Kwon, Jeong-Hak;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.255-264
    • /
    • 2009
  • Background: Chronic low grade inflammation is closely linked to type II diabetes, obesity, and atherosclerosis. Macrophages play a key role in the regulation of pro- or anti-inflammatory actions at the lesion sites of disease. Components of cordyceps militaris, cordycepin and adenosine, have been used for the modulation of inflammatory diseases. The effects of cordycepin in the modulation of macrophages have yet to be be elucidated. We investigated the effects of cordycepin and adenosine on the morphological changes of macrophages under the inflammatory condition of LPS and an anti-inflammatory condition involving high concentrations of adenosine. Methods: We confirmed the mRNA levels of the M1/M2 cytokine genes through RT-PCR and morphological change. Results: LPS-activated macrophages returned to their inactivated original shape, i.e., they looked like naive macrophages, through the treatment with high concentrations of cordycepin ($40{\mu}g/ml$). LPS and adenosine activated macrophages also returned to their original inactivated shapes after cordycepin treatment; however, at relatively higher levels of cordycepin than adenosine. This change did not occur with relatively low concentrations of cordycepin. Adenosine down-regulated the gene expression of M1 cytokines (IL-$1{\beta}$, TNF-${\alpha}$) and chemokines (CX3CR1, RANTES), such as cordycepin. Additionally, M2 cytokines (IL-10, IL-1ra, TGF-${\beta}$) were up-regulated by both cordycepin and adenosine. Conclusion: Based on these observations, both cordycepin and adenosine regulated the phenotypic switch on macrophages and suggested that cordycepin and adenosine may potentially be used as immunomodulatory agents in the treatment of inflammatory disease.

Involvement of Adenosine in The Spinal Antinociception by Capsaicinoids (캅사이신 유사체들의 척수 진통작용을 매개하는 아데노신)

  • 유은숙;김옥희;손여원;정인경;이상섭
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.55-60
    • /
    • 1999
  • To investigate analgesic mechanism of capsaicin and its analogues (capaicinoids) adenosine release was measured by high performance liquid chromatography from rat spinal cord synaptosomes. Exposure of synaptosomes to $K^+$ and morphine produced a dose dependent release of adenosine in the presence of $Ca^{++}$. Capsaicin (0.1, 1, $10{\;}{\mu}M$), and its analogues: NE-19550 (1, 10, $100{\;}{\mu}M$), DMNE (1, 10, $100{\;}{\mu}M$) and KR 25018 (0.1, 1, $10{\;}{\mu}M$) produced a concentration dependent release of adenosine in the presence of $Ca^{++}$. Nifedifine, L-type voltage sensitive calcium channel blocker, inhibited $K^+$ (6, 12 mM)-and morphine ($10{\;}{\mu}M$)-evoked release of adenosine partially. Capsazepine, a novel capsaicin selective antagonist, blocked only capsaicin and capsaicinoids induced release of adenoside. Therefore, it is suggested that the adenosine release by capsaicin and capsaicinoids having antinociceptive effects involves actvation of capsaicin specific receptor and capsaicin sensitive $Ca^{++}$. channel.

  • PDF

Influence of Adenosine and Magnesium on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 및 Magnesium의 영향)

  • Choi, Bong-Kyu;Yoon, Young-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.175-182
    • /
    • 1993
  • As it has been reported that the depolarization-induced ACh release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the adenosine effect is magnesium dependent, the present study was undertaken to delineate the role of endogenus adenosine as a modulator of hippocampal acetylcholine release in this study. Slices from the rat hippocampus were equilibrated with $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3Hz, $5\;V\;cm^{-1},$ 2ms, rectangular pulses), and the influence of various agents on the evoked tritium outflow was investigated. Adenosine, in concentrations ranging from $0.3\;to\;100\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without changing the basal rate of release. $DPCPX(1{\sim}10{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium release. And the effects of adenosine were significantly inhibited by $DPCPX(2{\mu}M)$ treatment. CPCA, a specific $A_2-agonist$, in concentration ranging from $0.3\;to\;30\;{\mu}M$ decreased evoked tritium outflow with increase of basal rate of tritium release, and these effects were also abolished by $DPCPX(2{\mu}M)$ pretreatment. But, $CGS(0.1{\sim}10{\mu}M)$, a recently introduced potent $A_2-agonist$, did not alter the evoked tritium outflow. When the magnesium concentration of the medium was reduced to 0 mM, there was no change in evoked ACh release by adenosine. In contrast, increasing the magnesium concentration to 4 mM, the inhibitory effects of adenosine were significantly potentiated. These results indicate that $A_1-adenosine$ heteroreceptor is involved in ACh-release in the rat hippocampus and the inhibitory effects of adenosine mediated by $A_1-receptor$ is magnesium-dependent.

  • PDF

Effects of Adenosine on the Action Potentials of Rabbit SA Nodal Cells (동방결절 활동전압에 대한 아데노신 효과)

  • Kim, Ki-Whan;Ho, Won-Kyung
    • The Korean Journal of Physiology
    • /
    • v.18 no.1
    • /
    • pp.19-35
    • /
    • 1984
  • Since the first report of Drury and $Szent-Gy{\ddot{o}}rgyi$ in 1929, the inhibitory influences of adenosine on the heart have repeatedly been described by many investigators. These studies have shown that adenosine and adenine nucleotides have overall depressant effects, similar to those of acetylcholine. Heart beats become slow and weak. It is also well known that adenosine is a potent endogenous coronary vasodilator. Many investigations on the working mechanisms of adenosine have been focused mainly on the effects of the coronary blood flow. However, the cellular mechanisms underlying the inhibitory action of adenosine on sinus node are not well understood yet. Thus, this study was undertaken to examine the behavior of rabbit SA node under influence of adenosine. In these series of experiments three kinds of preparations were used: whole atrial pair, left atrial strip, and isolated SA node preparations. The electrical activity of SA node was recorded with conventional glass microelectrodes 30 to 50 $M{\Omega}$. The preparations were superfused with bicarbonate-buffered Tyrode solution of pH 7.35 and aerated with a gas mixture of $3%\;CO_2-97%\;O_2$ at $35^{\circ}C$. In whole atrial pair, adenosine suppressed sinoatrial rhythm in a dose-dependent manner. Effect of adenosine on atrial rate appeared at the concentration of $10^{-5}M$ and was enhanced in parallel with the increase in adenosine concentration. Inhibitory action of adenosine on pacemaker activity was more prominent in the preparation pretreated with norepinephrine, which can steepen the slope of pacemaker potential by increasing permeability of $Ca^{+2}$. Calcium ions in perfusate slowly produced a marked change in sinoatrial rhythm. Elevation of the calcium concentration from 0.3 to 8 mM increased the atrial rate from 132 to 174 beats/min, but over 10 mM $Ca^{+2}$ decreased. The inhibitory effect of adenosine on sinoatrial rhythm developed very rapidly. Atrial rate was recovered promptly from the adenosine-induced suppression by the addition of norepinephrine, but extra $Ca^{+2}$ was less suitable to restore the suppression of atrial rate. Adenosine suppressed also atrial contractility in the same dosage range that restricted pacemaker activity, even in the reserpinized preparation. In isolated SA node preparation, spontaneous firing rate of SA node at $35^{\circ}C$(mean{\pm}SEM, n=16) was $154{\pm}3.3\;beats/min. The parameters of action potentials were: maximum diastolic potential(MDP), $-73{\pm}1.7\;mV: overshoot(OS), $9{\pm}1.4\;mV: slope of pacemaker potential(SPP), $94{\pm}3.0\;mV/sec. Adenosine suppressed the firing rate of SA node in a dose-dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}M$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine and propranolol. Lowering extra $Ca^{2+}$ irom 2 mM to 0.3 mM resulted in a marked decrease of OS and SPP, but almost no change of MDP. However, increase of perfusate $Ca^{2+}$ from 2 mM to 6 or 8 mM produced a prominent decrease of MDP and a slight increase of OS and SPP. Dipyridamole(DPM), which is known to block the adenosine transport across the cell membrane, definately potentiated the action of adenosine. The results of this experiment suggest that adenosine suppressed pacemaker activity and atrial contractility simultaneously and directly, by decreasing $Ca^{2+}-permeability$ of nodal and atrial cell membranes.

  • PDF