• Title/Summary/Keyword: adenal gland

Search Result 2, Processing Time 0.017 seconds

Influence of Apamin on Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Eun-Sook;Park, Hyeon-Gyoon;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.142-151
    • /
    • 2002
  • The present study was attempted to investigate the effect of apamin on catecholamine (CA) secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of apamin (1 nM) into an adrenal vein for 20 min produced greatly potentiation in CA secretion evoked by ACh (5.32 $ imes$ $10^{-3}$ M), high $K^+$, (5.6 $ imes$ $10^{-2}$), DMPP ($10^{-4}$ M for 2 min), McN-A-343 ($10^{-4}$ M for 2 min), cyclopiazonic acid ($10^{-5}$ M for 4 min) and Bay-K-8644 ($10^{-5}$ M for 4 min). However, apamin itself did fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded with apamin (1 nM) under the presence of glibenclamide ($10^{-6}$ M), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretion evoked by DMPP and McN-A-343 was not affected. However, the perfusion of high concentration of apamin (100 nM) into an adrenal vein for 20 min rather inhibited significantly CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, cyclopiazonic acid and Bay-K-8644. Taken together, these results suggest that the low concentration of apamin causes greatly the enhancement of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. These findings suggests that apamin-sensitive SK ($Ca^{2+}$) channels located in rat adrenal medullary chromaffin cells may play an inhibitory role in the release of catecholamines mediated by stimulation of cholinergic nicotinic and muscarinic receptors as well as membrane depolarization. However, it is thought that high concentration of apamin cause the inhibitory responses in catecholamine secretion evoked by stimulation of cholinergic receptors as well as by membrane depolarization from the rat adrenal gland without relevance with the SK channel blockade.

Effects of Estrogen on the Transcriptional Activities of Catecholamine Biosynthesizing Enzymes in the Brain and Adrenal Gland of Ovariectomized Rats (난소 절제 흰쥐의 뇌와 부신에서의 Catecholamine Biosynthesizing Enzyme들의 전사에 미치는 Estrogen의 효과)

  • 유경신;이종화;최돈찬;이성호
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.117-122
    • /
    • 2002
  • Dopamine(DA), norepinephrine(NE), and epinephrine(E) belong to a class of neurotransmitters known as catecholamine (CA) which are synthesized and secreted by mammalian brain and adrenal medulla. CA regulate several behavior patterns connected with breeding, and regulate GnRH-gonadotropin hormone axis' vitality between hypothalamus-pituitary gland linking with reproduction freeze. The present study examined effects of sex steroid hormone on the transcriptional activities of CA biosynthesis enzymes, tyrosine hydroxylase(TH), dopamine $\beta$ -hydroxylase(DBH), and phenylethaolamine-N-methyl transferase(PNMT). Mature female rats were ovariectomized(OVX) and implanted with 17 $\beta$-estradiol(E$_2$: 500 $\mu\textrm{g}$/ml) or sesame oil. Forty-eight hours after implantation all the animals were sacrificed. Total RNAs were extracted immediately and were applied to semi-quantitative reverse transcription-polymerase chain reaction(RT-PCR). The expression level of TH was appeared by hypothalamus > SNc> adrenal medulla orders in OVX+Oil group, and by SNc > hypothalamus) adrenal medulla orders in OVX+E$_2$ group. Treatment with E$_2$ significantly increased TH expression in SNc and adrenal medulla but in hypothalamus, the reduced TH expression was observed. The expression level of DBH was appeared by adrenal medulla > SNc > hypothalamus orders in OVX+Oil group and in OVX+E$_2$ group. Administration of E$_2$ significantly reduced DBH expression in SNc, and increased in adrenal medulla. Two cDNA products, large(PNMT1) and small(PMNTs) species of 110bp difference, were amplified in SNc and hypothalamus, but only PNMTs was observed in adenal medulla. The PNMTs expression level was in the order of adrenal medulla > hypothalamus > SNc in both OVX+Oil and OVX+E$_2$ group. The PNMTs expression in SNc and adrenal medulla was significantly increased byE$_2$. The present report demonstrated that estrogen effects on transcriptional activities for CA biosynthethic enzymes were tissue specific in adrenal medulla as well as different region of brain. These results suggest that it might be crucial relationship between the type of estrogen receptor and CA enzyme gene expression.

  • PDF