• Title/Summary/Keyword: additive noise

Search Result 626, Processing Time 0.024 seconds

Blind Channel Estimator based on the RLS algorithm (RLS 알고리즘에 기반을 둔 블라인드 채널 추정)

  • 서우정;하판봉;윤태성
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.655-658
    • /
    • 1999
  • In this study, We derived Recursive Least Squares(RLS) algorithm with adaptive maximum -likelihood channel estimate for digital pulse amplitude modulated sequence in the presence of intersymbol interference and additive white Gaussian noise. RLS algorithms have better convergence characteristics than conventional algorithms, LMS Least Mean Squares) algorithms.

  • PDF

A Quasi-Likelihood Approach to Nonlinear Filtering Problems

  • Kim, Yoon-Tae
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.2
    • /
    • pp.221-235
    • /
    • 1998
  • Suppose that an observed process can be written as the additive model of the signal process and the noise process with unknown parameters. In practice the signal process is not directly observed. We consider the problem of estimating parameter from the observation process using the quasi-likelihood method.

  • PDF

Switching Filter Algorithm using Fuzzy Weights based on Gaussian Distribution in AWGN Environment (AWGN 환경에서 가우시안 분포 기반의 퍼지 가중치를 사용한 스위칭 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.207-213
    • /
    • 2022
  • Recently, with the improvement of the performance of IoT technology and AI, automation and unmanned work are progressing in a wide range of fields, and interest in image processing, which is the basis of automation such as object recognition and object classification, is increasing. Image noise removal is an important process used as a preprocessing step in an image processing system, and various studies have been conducted. However, in most cases, it is difficult to preserve detailed information due to the smoothing effect in high-frequency components such as edges. In this paper, we propose an algorithm to restore damaged images in AWGN(additive white Gaussian noise) using fuzzy weights based on Gaussian distribution. The proposed algorithm switched the filtering process by comparing the filtering mask and the noise estimate with each other, and reconstructed the image by calculating the fuzzy weights according to the low-frequency and high-frequency components of the image.

Effects of Noise on a Model of Oscillatory Chemical Reaction

  • Basavaraja, C.;Bagchi, Biman;Park, Do-Young;Choi, Young-Min;Park, Hyun-Tae;Choe, Sang-Joon;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1525-1530
    • /
    • 2006
  • A simple oscillating reaction model subject to additive Gaussian white noise is investigated as the model is located in the dynamic region of oscillations. The model is composed of three ordinary differential equations representing the time evolutions of X, Y, and Z, respectively. Initially, a uniform random noise is separately added to the three equations to study the effect of noise on the oscillatory cycle of X, Y, and Z. For a given value of noise intensity, the amplitude of oscillation increases monotonically with time. Furthermore, the noise is added to any one of the three equations to study the impact of noise on one species on the bifurcation behavior of the other.

MRF-based Adaptive Noise Detection Algorithm for Image Restoration (영상 복원을 위한 MRF 기반 적응적 노이즈 탐지 알고리즘)

  • Nguyen, Tuan-Anh;Hong, Min-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1368-1375
    • /
    • 2013
  • In this paper, we presents a spatially adaptive noise detection and removal algorithm. Under the assumption that an observed image and the additive noise have Gaussian distribution, the noise parameters are estimated with local statistics, and the parameters are used to define the constraints on the noise detection process, where the first order Markov Random Field (MRF) is used. In addition, an adaptive low-pass filter having a variable window sizes defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image. Experimental results demonstrate the capability of the proposed algorithm.

Speech Recognition in Noisy Environments using the NOise Spectrum Estimation based on the Histogram Technique (히스토그램 처리방법에 의한 잡음 스펙트럼 추정을 이용한 잡음환경에서의 음성인식)

  • Kwon, Young-Uk;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.68-75
    • /
    • 1997
  • Spectral subtraction is widely-used preprocessing technique for speech recognition in additive noise environments, but it requires a good estimate of the noise power spectrum. In this paper, we employ the histogram technique for the estimation of noise spectrum. This technique has advantages over other noise estimation methods in that it does not requires speech/non-speech detection and can estimate slowly-varying noise spectra. According to the speaker-independent isolated word recognition in both colored Gaussian and car noise environments under various SNR conditions. Histogram-technique-based spectral subtraction method yields superier performance to the one with conventional noise estimation method using the spectral average of initial frames during non-speech period.

  • PDF

On-Line Blind Channel Normalization for Noise-Robust Speech Recognition

  • Jung, Ho-Young
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.143-151
    • /
    • 2012
  • A new data-driven method for the design of a blind modulation frequency filter that suppresses the slow-varying noise components is proposed. The proposed method is based on the temporal local decorrelation of the feature vector sequence, and is done on an utterance-by-utterance basis. Although the conventional modulation frequency filtering approaches the same form regardless of the task and environment conditions, the proposed method can provide an adaptive modulation frequency filter that outperforms conventional methods for each utterance. In addition, the method ultimately performs channel normalization in a feature domain with applications to log-spectral parameters. The performance was evaluated by speaker-independent isolated-word recognition experiments under additive noise environments. The proposed method achieved outstanding improvement for speech recognition in environments with significant noise and was also effective in a range of feature representations.

  • PDF

Performance Characteristics of Some Signal Detectors in Weakly Dependent Noise (약의존성 잡음에서 몇가지 신호검파 방식들의 성능특성)

  • 김태현;김광순;류상우;송익호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.155-160
    • /
    • 1996
  • In this paper, we consider the discrete-time known signal detection problem under the presence of additive noise exhibiting weak dependence. We derive the locally optimum, memoryless, and one-memory detector test statistics under a seakly dependent noise model. The performance characteristics of the one-memory detector can achieve almost optimum performance at the expense of only one memory unit under the weakly dependent noise model.

  • PDF

Speech Enhancement Using Receding Horizon FIR Filtering

  • Kim, Pyung-Soo;Kwon, Wook-Hyu;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • A new speech enhancement algorithm for speech corrupted by slowly varying additive colored noise is suggested based on a state-space signal model. Due to the FIR structure and the unimportance of long-term past information, the receding horizon (RH) FIR filter known to be a best linear unbiased estimation (BLUE) filter is utilized in order to obtain noise-suppressed speech signal. As a special case of the colored noise problem, the suggested approach is generalized to perform the single blind signal separation of two speech signals. It is shown that the exact speech signal is obtained when an incoming speech signal is noise-free.

  • PDF

Speech Enhancement Using the Adaptive Noise Canceling Technique with a Recursive Time Delay Estimator (재귀적 지연추정기를 갖는 적응잡음제거 기법을 이용한 음성개선)

  • 강해동;배근성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.33-41
    • /
    • 1994
  • A single channel adaptive noise canceling (ANC) technique with a recursive time delay estimator (RTDE) is presented for removing effects of additive noise on the speech signal. While the conventional method makes a reference signal for the adaptive filter using the pitch estimated on a frame basis from the input speech, the proposed method makes the reference signal using the delay estimated recursively on a sample-by-sample basis. As the RTDEs, the recursion formulae of autocorrelation function (ACF) and average magnitude difference function (AMDF) are derived. The normalized least mean square (NLMS) and recursive least square (RLS) algorithms are applied for adaptation of filter coefficients. Experimental results with noisy speech demonstrate that the proposed method improves the perceived speech quality as well as the signal-to-noise ratio and cepstral distance when compared with the conventional method.

  • PDF