• Title/Summary/Keyword: adaptive thresholding

Search Result 129, Processing Time 0.024 seconds

Segmentation of tooth using Adaptive Optimal Thresholding and B-spline Fitting in CT image slices (적응 최적 임계화와 B-spline 적합을 사용한 CT영상열내 치아 분할)

  • Heo, Hoon;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.51-61
    • /
    • 2004
  • In the dental field, the 3D tooth model in which each tooth can be manipulated individually is an essential component for the simulation of orthodontic surgery and treatment. To reconstruct such a tooth model from CT slices, we need to define the accurate boundary of each tooth from CT slices. However, the global threshold method, which is commonly used in most existing 3D reconstruction systems, is not effective for the tooth segmentation in the CT image. In tooth CT slices, some teeth touch with other teeth and some are located inside of alveolar bone whose intensity is similar to that of teeth. In this paper, we propose an image segmentation algorithm based on B-spline curve fitting to produce smooth tooth regions from such CT slices. The proposed algorithm prevents the malfitting problem of the B-spline algorithm by providing accurate initial tooth boundary for the fitting process. This paper proposes an optimal threshold scheme using the intensity and shape information passed by previous slice for the initial boundary generation and an efficient B-spline fitting method based on genetic algorithm. The test result shows that the proposed method detects contour of the individual tooth successfully and can produce a smooth and accurate 3D tooth model for the simulation of orthodontic surgery and treatment.

Wavelet-Based Digital Watermarking Using Level-Adaptive Thresholding (레벨 적응적 이치화를 이용한 웨이블릿 기반의 디지털 워터마킹)

  • Kim, Jong-Ryul;Mun, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • In this paper, a new digital watermarking algorithm using wavelet transform is proposed. Wavelet transform is widely used for image processing, because of its multiresolution characteristic which conforms to the principles of the human visual system(HVS). It is also very efficient for localizing images in the spatial and frequency domain. Since wavelet coefficients can be characterized by the gaussian distribution, the proposed algorithm uses a gaussian distributed random vector as the watermark in order to achieve invisibility and robustness. After the original image is transformed using DWT(Discrete Wavelet Transform), the coefficients of all subbands including LL subband are utilized to equally embed the watermark to the whole image. To select perceptually significant coefficients for each subband, we use level-adaptive thresholding. The watermark is embedded to the selected coeffocoents, using different scale factors according to the wavelet characteristics. In the process of watermark detection, the similarity between the original watermark and the extracted watermark is calculated by using vector projection method. We analyze the performance of the proposed algorithm, compared with other transform-domain watermarking methods. The experimental results tested on various images show that the proposed watermark is less visible to human eyes and more robust to image compressions, image processings, geometric transformations and various noises, than the existing methods.

  • PDF

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

Low Complexity Image Thresholding Based on Block Type Classification for Implementation of the Low Power Feature Extraction Algorithm (저전력 특징추출 알고리즘의 구현을 위한 블록 유형 분류 기반 낮은 복잡도를 갖는 영상 이진화)

  • Lee, Juseong;An, Ho-Myoung;Kim, Byungcheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.179-185
    • /
    • 2019
  • This paper proposes a block-type classification based image binarization for the implementation of the low-power feature extraction algorithm. The proposed method can be implemented with threshold value re-use technique approach when the image divided into $64{\times}64$ macro blocks size and calculating the threshold value for each block type only once. The algorithm is validated based on quantitative results that only a threshold value change rate of up to 9% occurs within the same image/block type. Existing algorithms should compute the threshold value for 64 blocks when the macro block is divided by $64{\times}64$ on the basis of $512{\times}512$ images, but all suggestions can be made only once for best cases where the same block type is printed, and for the remaining 63 blocks, the adaptive threshold calculation can be reduced by only performing a block type classification process. The threshold calculation operation is performed five times when all block types occur, and only the block type separation process can be performed for the remaining 59 blocks, so 93% adaptive threshold calculation operation can be reduced.

Fast Face Detection in Video Using The HCr and Adaptive Thresholding Method (HCr과 적응적 임계화에 의한 고속 얼굴 검출)

  • 신승주;최석림
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.61-71
    • /
    • 2004
  • Recently, various techniques for face detection are studied, but most of them still have problems on processing in real-time. Therefore, in this paper, we propose novel techniques for real-time detection of human faces in sequential images using motion and chroma information. First, background model is used to find a moving area. In this procmoving area. edure, intensity values for reference images are averaged, then skin-color are detected in We use HCr color-space model and adaptive threshold method for detection. Second, binary image labeling is applied to acquire candidate regions for faces. Candidates for mouth and eyes on a face are obtained using differences between green(G) and blue(B), intensity(I) and chroma-red(Cr) value. We also considered distances between eye points and mouth on a face. Experimental results show effectiveness of real-time detection for human faces in sequential images.

Adaptive Multi-class Segmentation Model of Aggregate Image Based on Improved Sparrow Search Algorithm

  • Mengfei Wang;Weixing Wang;Sheng Feng;Limin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.391-411
    • /
    • 2023
  • Aggregates play the skeleton and supporting role in the construction field, high-precision measurement and high-efficiency analysis of aggregates are frequently employed to evaluate the project quality. Aiming at the unbalanced operation time and segmentation accuracy for multi-class segmentation algorithms of aggregate images, a Chaotic Sparrow Search Algorithm (CSSA) is put forward to optimize it. In this algorithm, the chaotic map is combined with the sinusoidal dynamic weight and the elite mutation strategies; and it is firstly proposed to promote the SSA's optimization accuracy and stability without reducing the SSA's speed. The CSSA is utilized to optimize the popular multi-class segmentation algorithm-Multiple Entropy Thresholding (MET). By taking three METs as objective functions, i.e., Kapur Entropy, Minimum-cross Entropy and Renyi Entropy, the CSSA is implemented to quickly and automatically calculate the extreme value of the function and get the corresponding correct thresholds. The image adaptive multi-class segmentation model is called CSSA-MET. In order to comprehensively evaluate it, a new parameter I based on the segmentation accuracy and processing speed is constructed. The results reveal that the CSSA outperforms the other seven methods of optimization performance, as well as the quality evaluation of aggregate images segmented by the CSSA-MET, and the speed and accuracy are balanced. In particular, the highest I value can be obtained when the CSSA is applied to optimize the Renyi Entropy, which indicates that this combination is more suitable for segmenting the aggregate images.

Adaptive Noise Reduction of Speech Using Wavelet Transform (웨이브렛 변환을 이용한 음성의 적응 잡음 제거)

  • Lee, Chang-Ki;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.190-196
    • /
    • 2009
  • A new time adapted threshold using the standard deviations of Wavelet coefficients after Wavelet transform by frame scale is proposed. The time adapted threshold is set up using the sum of standard deviations of Wavelet coefficient in level 3 approximation and weighted level 1 detail. Level 3 approximation coefficients represent the voiced sound with low frequency and level 1 detail coefficients represent the unvoiced sound with high frequency. After reducing noise by soft thresholding with the proposed time adapted threshold, there are still residual noises in silent interval. To reduce residual noises in silent interval, a detection algorithm of silent interval is proposed. From simulation results, it can be noticed that SNR and MSE of the proposed algorithm are improved than those of Wavelet transform and than those of Wavelet packet transform.

  • PDF

Automated Vessels Detection on Infant Retinal Images

  • Sukkaew, Lassada;Uyyanonvara, Bunyarit;Barman, Sarah A;Jareanjit, Jaruwat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.321-325
    • /
    • 2004
  • Retinopathy of Prematurity (ROP) is a common retinal neovascular disorder of premature infants. It can be characterized by inappropriate and disorganized vessel. This paper present a method for blood vessel detection on infant retinal images. The algorithm is designed to detect the retinal vessels. The proposed method applies a Lapalacian of Gaussian as a step-edge detector based on the second-order directional derivative to identify locations of the edge of vessels with zero crossings. The procedure allows parameters computation in a fixed number of operations independent of kernel size. This method is composed of four steps : grayscale conversion, edge detection based on LOG, noise removal by adaptive Wiener filter & median filter, and Otsu's global thresholding. The algorithm has been tested on twenty infant retinal images. In cooperation with the Digital Imaging Research Centre, Kingston University, London and Department of Opthalmology, Imperial College London who supplied all the images used in this project. The algorithm has done well to detect small thin vessels, which are of interest in clinical practice.

  • PDF

Shadow Removal from Scanned Documents taken by Mobile Phones based on Image Local Statistics (이미지 지역 통계를 이용한 모바일 기기로 촬영한 문서에서의 그림자 제거)

  • Na, Yeji;Park, Sang Il
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • In this paper, we present a method for removing shadows from scanned documents. Compared to the existing methods such as one based on image pyramid representation or adaptive thresholding, our method produces more robust and higher quality results. The basic idea of the approach is to use the local image statistics and to separate interesting regions from the image such as the regions around letters and figures. For the separated regions, we adaptively adjust the local brightness and contrast, and apply the sigmoid function to the intensity values as well to enhance the clarity of the image. For separated the other empty regions, we apply the gradient-base image hole filling method to fill the region with smooth color change.

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.