• 제목/요약/키워드: adaptive self-organizing feature map

검색결과 9건 처리시간 0.025초

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

적응적 자기 조직화 형상지도 (Adaptive Self Organizing Feature Map)

  • 이형준;김순협
    • 한국음향학회지
    • /
    • 제13권6호
    • /
    • pp.83-90
    • /
    • 1994
  • 본 논문에서는 코호넨(Kohonen)의 SOFM (Self-Organizing Feature Map) 알고리즘의 단점을 해결하기 위한 새로운 학습 알고리즘 ASOFM(Adaptive Self-Organized Feature Map)을 제안한다. 코호넨의 학습 알고리즘은 초기화된 연결 벡터에 대하여 극소점에 빠지는 경우도 있다. 그러나 제안된 알고리즘에서는 학습과정중에 네트워크의 상태를 평가할 수 있는 목적함수(object function)을 사용하였고, 이 함수의 출력에 따라 학습의 각 시점에서 적응적으로 학습률의 재조정이 가능하였다. 이 결과, 네트워크의 상태가 최소점에 수렴함이 보증 되고 학습률의 적응성에 의해 임의의 학습패턴에 대한 학습의 일반화 능력이 보장되었다. 또한 제안된 알고리즘은 코호넨의 알고리즘보다 약 $70\%$이상의 학습시간을 단축한다.

  • PDF

모듈구조 mART 신경망을 이용한 3차원 표적 피쳐맵의 최적화 (Optimization of 3D target feature-map using modular mART neural network)

  • 차진우;류충상;서춘원;김은수
    • 전자공학회논문지C
    • /
    • 제35C권2호
    • /
    • pp.71-79
    • /
    • 1998
  • In this paper, we propose a new mART(modified ART) neural network by combining the winner neuron definition method of SOM(self-organizing map) and the real-time adaptive clustering function of ART(adaptive resonance theory) and construct it in a modular structure, for the purpose of organizing the feature maps of three dimensional targets. Being constructed in a modular structure, the proposed modular mART can effectively prevent the clusters from representing multiple classes and can be trained to organze two dimensional distortion invariant feature maps so as to recognize targets with three dimensional distortion. We also present the recognition result and self-organization perfdormance of the proposed modular mART neural network after carried out some experiments with 14 tank and fighter target models.

  • PDF

신경망을 이용한 벡터 양자화의 코드북 설계 (A Codebook Design for Vector Quantization Using a Neural Network)

  • 주상현;원치선;신재호
    • 한국통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.276-283
    • /
    • 1994
  • 백터양자와를 위한 신경망을 사용은 그것의 적응적 설계 특성으로 더 좋은 코드북을 설계할 수 있을 것으로 기대되며, 또한 설계된 코드북의 코드워드는 자동정렬되어 실시간 탐색을 가능케 한다. 신경망의 이러한 장점을 살리기 위하여 본 논문에서는 KSFM(Kohonen`s Self-organizing Feature Map)을 수정하고, K-means 알고리즘을 결함한 새로운 코드북 설계 할고리즘을 제안한다. 실험결과로 부터 제안된 알고리즘의 성능향상과 실시간 처리를 위한 코드북의 부분탐색 가능성을 확인하였다.

  • PDF

자기 분열 및 구조화 신경회로망 (A Self Creating and Organizing Neural Network)

  • 최두일;박상희
    • 대한전기학회논문지
    • /
    • 제41권5호
    • /
    • pp.533-540
    • /
    • 1992
  • The Self Creating and Organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF

움직임 예측과 신경 회로망을 이용한 고속 움직임 추정 알고리즘 (Fast Motion Estimation Algorithm Using Motion Vector Prediction and Neural Network)

  • 최정현;이경환;이법기;정원식;김경규;김덕규
    • 한국통신학회논문지
    • /
    • 제24권9A호
    • /
    • pp.1411-1418
    • /
    • 1999
  • 본 논문에서는, 움직임 예측과 신경 회로망을 이용한 고속 움직임 추려하여, 현재 블록의 움직임 벡터를 인적 블록들의 움직임 벡터들로 예측하정 알고리즘을 제안하였다. 움직임 벡터의 공간적 상관성이 높다는 점을 고였다. 학습 시간이 빠르고 2차원 적응적 특성의 KSFM(Kohonen self-organizing feature map) 신경망을 이용하여, 움직임 벡터의 코드북(codebook)을 설계하였다. 2차원 코드북상에서 서로 비슷한 코드벡터들(codevectors)은 가까이 위치하므로, 예측 코드벡터로부터 코드북상에서 점진적으로 움직임을 추정하였다. 모의 실험 결과, 제안한 방법이 적은 계산량으로도 우수한 성능을 나타냄을 확인하였다.

  • PDF

구조적응 자기조직화 신경망 : 한글 문자인식에의 적용 (Structure-Adaptive Self-Organizing Neural Network : Application to Hangul Character Recognition)

  • 이경미;조성배;이일병
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.137-142
    • /
    • 1995
  • 코호넨의 SOFM(Self-Organizing Feature Map)온 빠른 검증 학습이 가능하여 다층 퍼셉트론의 단점을 보완할 수 있는 패턴분류기로 부각되고 있다. 그러나 기본적으로 고정된 크기와 구조의 네트워크를 사용하기 때문에 실재 문제에 적용하기가 쉽지 않다는 문제가 있다. 본 논문에서는 패턴에 대한 사전 정보없이 복잡한 패턴공간을 적응적으로 분할하기 위해 구조적응되는 자기조직화 신경망을 소개하고 이를 인쇄체 한글 문자의 인식에 적용한 결과를 보여준다. 여기에서 제안하는 신경망은 SOFM의 각 셀이 좀더 자세한 SOFM으로 확장될 수 있도록하며, 확률분포가 0인 셀을 제거함으로써 패턴 공간에 보다 근사한 분류를 가능하게 한다. 실제로 이러한 방식이 한글과 같은 복잡한 분류 문제에서 어떻게 작동하는지 설명하고, 한글 완성형 2350자에 대해 실험한 결과를 보여준다.

  • PDF

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • 김용수
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

Underutilization 문제를 해결한 퍼지 신경회로망 모델 (A Fuzzy Neural Network Model Solving the Underutilization Problem)

  • 김용수;함창현;백용선
    • 한국지능시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.354-358
    • /
    • 2001
  • 본 논문에서는 underutilization 문제를 해결한 퍼지 신경회로망 모델을 제시한다. 이 퍼지 신경 회로망은 ART-1 신경회로망과 유사한 제어 구조를 가지고 있어 유연성이 있으면서도 안정성이 있다. 또한 연결강도의 초기화가 필요 없고 ART-1 신경회로망에 비하여 잡음에 민감하지 않다. 이 퍼지 신경회로망의 학습법칙은 코호넨의 학습법칙을 변형하고 퍼지화 하였으며 누설 경쟁학습의 퍼지화와 조건 확률의 퍼지화에 기반을 두고 있다. 출력 뉴런 중에서 승자를 정한 후에 행해지는 점검 테스트에서는 유사척도로 상대적 거리를 사용하였다. 이 상대적 거리는 유클리디안 거리와 함께 데이터와 클러스터들의 대푯값들 간의 상대적인 위치를 고려한 것이다. 본 논문에서 제안한 퍼지 신경회로망과 코호넨 자기 조직화 특징 지도의 성능을 비교하기 위하여 널리 사용되어온 IRIS 데이터와 가우시안 분포 데이터를 사용하였다.

  • PDF