• Title/Summary/Keyword: adaptive optics system

Search Result 71, Processing Time 0.025 seconds

WAVEFRONT SENSING TECHNOLOGY FOR ADAPTIVE OPTICAL SYSTEMS

  • Uhma Tae-Kyoung;Rohb Kyung-Wan;Kimb Ji-Yeon;Park Kang-Soo;Lee Jun-Ho;Youn Sung-Kie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.628-632
    • /
    • 2005
  • Remote sensing through atmospheric turbulence had been hard works for a long time, because wavefront distortion due to the Earth's atmospheric turbulence deteriorates image quality. But due to the appearance of adaptive optics, it is no longer difficult things. Adaptive optics is the technology to correct random optical wavefront distortions in real time. For past three decades, research on adaptive optics has been performed actively. Currently, most of newly built telescopes have adaptive optical systems. Adaptive optical system is typically composed of three parts, wavefront sensing, wavefront correction and control. In this work, the wavefront sensing technology for adaptive optical system is treated. More specifically, shearing interferometers and Shack-Hartmann wavefront sensors are considered. Both of them are zonal wavefront sensors and measure the slope of a wavefront. . In this study, the shearing interferometer is made up of four right-angle prisms, whose relative sliding motions provide the lateral shearing and phase shifts necessary for wavefront measurement. Further, a special phase-measuring least-squares algorithm is adopted to compensate for the phase-shifting error caused by the variation in the thickness of the index-matching oil between the prisms. Shack-Hartmann wavefront sensors are widely used in adaptive optics for wavefront sensing. It uses an array of identical positive lenslets. And each lenslet acts as a subaperture and produces spot image. Distortion of an input wavefront changes the location of spot image. And the slope of a wavefront is obtained by measuring this relative deviation of spot image. Structures and measuring algorithms of each sensor will be presented. Also, the results of wavefront measurement will be given. Using these wavefront sensing technology, an adaptive optical system will be built in the future.

  • PDF

Simulation of a Laser Tomography Adaptive Optics with Rayleigh Laser Guide Stars for the Satellite Imaging System

  • Ahn, Kyohoon;Lee, Sung-Hun;Park, In-Kyu;Yang, Hwan-Seok
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.101-113
    • /
    • 2021
  • Adaptive optics (AO) systems are becoming more complex to improve their optical performance and enlarge their field of view, so it is a hard and time consuming process to set up and optimize the components of AO systems with actual implementation. However, simulations allow AO scientists and engineers to experiment with different optical layouts and components without needing to obtain and prepare them physically. In this paper, we introduce a new AO simulation named the Korea Adaptive Optics Simulation (KAOS), independently developed by LIG Nex1. We verified the performance of KAOS by comparing with other AO simulation tools. In the comparison simulation, we confirmed the results from KAOS and other AO simulation tools were very similar. Also, we proposed a laser tomography AO system with five Rayleigh laser guide stars (LGSs) optimized by using KAOS to overcome the disadvantages of the AO system with a single sodium LGS for the satellite imaging system. We verified the performance of the proposed AO system using KAOS, and the simulation result showed averaged Strehl ratio of 0.37.

Adaptive Optics in Institute of Optics and Electronics, China

  • Jiang, Wenhan;Ling, Ning
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.3-3
    • /
    • 2000
  • Adaptive Optical (AO) technology can compensate for wave-front errors in real-time to improve image and beam quality. The research and development on AO in China began in 1979. In 1980, the first laboratory on AO in China was established in Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS). Since then several AO systems have been built in this Laboratory. The 19-element system is the first AO system in the world ever used in inertial confinement fusion (ICF) facility in our knowledge. It corrects the static error of this large laser engineering. The 21-element system was firstly tested at the 1.2m telescope of Kunming Observatory in 1990 and then up-dated as an IR AO system installed at the 2.16m telescope of Beijing Observatory. The 37-element system was used with a turbulence cell in Laboratory on Atmospheric Optics in Hefei to conduct elementary research on Atmospheric Optics. The 61-element system for astronomical observation is newly developed. It has been successfully installed at the 1.2m telescope of Kunming Observatory and a laser guide star system will be integrated with the system. A compact AO system using our newly developed miniature DM for high resolution ophthalmic imaging of retina is also being built. The key elements of these AO systems, deformable mirrors and fast-steering mirrors, are all developed in this Laboratory. In this talk, the main configurations of these AO systems, some test results as well as the specifications of these active mirrors will be presented.

  • PDF

Predictive Control Algorithms for Adaptive Optical Wavefront Correction in Free-space Optical Communication

  • Ke, Xizheng;Yang, Shangjun;Wu, Yifan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.641-651
    • /
    • 2021
  • To handle the servo delay in a real-time adaptive optics system, a linear subspace system identification algorithm was employed to model the system, and the accuracy of the system identification was verified by numerical calculation. Experimental verification was conducted in a real test bed system. Through analysis and comparison of the experimental results, the convergence can be achieved only 200 times with prediction and 300 times without prediction. After the wavefront peak-to-valley value converges, its mean values are 0.27, 4.27, and 10.14 ㎛ when the communication distances are 1.2, 4.5, and 10.2 km, respectively. The prediction algorithm can effectively improve the convergence speed of the peak-to-valley value and improve the free-space optical communication performance.

Python Package Prototype for Adaptive Optics Modeling and Simulation

  • Choi, Seonghwan;Bang, Byungchae;Kim, Jihun;Jung, Gwanghee;Baek, Ji-Hye;Park, Jongyeob;Han, Jungyul;Kim, Yunjong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.53.3-53.3
    • /
    • 2021
  • Adaptive Optics (AO) was first studied in the field of astronomy, and its applications have been extended to the field of laser, microscopy, bio, medical, and free space laser communication. AO modelling and simulation are required throughout the system development process. It is necessary not only for proper design but also for performance verification after the final system is built. In KASI, we are trying to develop the AO Python Package for AO modelling and simulation. It includes modelling classes of atmosphere, telescope, Shack-Hartmann wavefront sensor, deformable mirror, which are the components for an AO system. It also includes the ability to simulate the entire AO system over time. It is being developed in the Super Eye Bridge project to develop a segmented mirror, an adaptive optics, and an emersion grating spectrograph, which are future telescope technologies. And it is planned to be used as a performance analysis system for several telescope projects in Korea.

  • PDF

Control-structure interaction in piezoelectric deformable mirrors for adaptive optics

  • Wang, Kainan;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.777-791
    • /
    • 2018
  • This paper discusses the shape control of deformable mirrors for Adaptive Optics in the dynamic range. The phenomenon of control-structure interaction appears when the mirror becomes large, lowering the natural frequencies $f_i$, and the control bandwidth $f_c$ increases to improve the performance, so that the condition $f_c{\ll}f_i$ is no longer satisfied. In this case, the control system tends to amplify the response of the flexible modes and the system may become unstable. The main parameters controlling the phenomenon are the frequency ratio $f_c/f_i$ and the structural damping ${\zeta}$. Robustness tests are developed which allow to evaluate a lower bound of the stability margin. Various passive and active strategies for damping augmentation are proposed and tested in simulation.

Kalman Filter Based Optimal Controllers in Free Space Optics Communication

  • Li, Zhaokun;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.368-380
    • /
    • 2016
  • There is no doubt that adaptive optics (AO) is the most promising method to compensate wavefront disturbance in free space optics communication (FSO). In order to improve the performance of the AO system described by discrete-time linear system model with time-delay and implicit phase turbulent model, new controllers based on a Kalman filter and its extensions are proposed. Based on the standard Kalman filter, we propose a fading memory filter to deal with the ruleless strong interference; sequential and U-D filters are applied to reduce implementation complexity for the embedded controllers. Theoretical analysis and the numerical simulations show that the proposed fading memory filter can upgrade the performance for AO systems in consideration of the unforeseen strong pulse interference, and the sequential and U-D filters perform well compared with a Kalman filter.

Wavefront Compensation Using a Silicon Carbide Deformable Mirror with 37 Actuators for Adaptive Optics (적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상)

  • Ahn, Kyohoon;Rhee, Hyug-Gyo;Lee, Ho-Jae;Lee, Jun-Ho;Yang, Ho-Soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.106-113
    • /
    • 2016
  • In this paper, we deal with the wavefront compensation capability of a silicon carbide (SiC) deformable mirror (DM) with 37 actuators for adaptive optics. The wavefront compensation capability of the SiC DM is predicted by computer simulation and examined by actual experiments with a closed-loop adaptive optics system consistsing of a light source, a phase plate, a SiC DM, a high speed Shack-Hartmann sensor, and a control computer. Distortion of wavefront is caused by the phase plate in the closed-loop adaptive optics system. The distorted wavefront has a peak-to-valley (PV) wavefront error of $0.3{\mu}m{\sim}0.9{\mu}m$ and root-mean-square (RMS) error of $0.06{\mu}m{\sim}0.25{\mu}m$. The high-speed Shack-Hartmann sensor measures the wavefront error of the distortion caused by the phase plate, and the SiC DM compensates for the distorted wavefront. The compensated wavefront has residual errors lower than $0.1{\mu}m$ PV and $0.03{\mu}m$ RMS. Consequently, we conclude that we can compensate for the distorted wavefront using the SiC DM in the closed-loop adaptive optics system with an operating frequency speed of 500 Hz.

A study on a fast measuring algorithm of wavefront for an adaptive optics system (적응광학시스템의 고속 파면측정 알고리즘에 대한 연구)

  • 박승규;백성훈;서영석;김철중;박준식;나성웅
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.251-257
    • /
    • 2002
  • The measuring resolution and speed for wavefronts are important to improve the performance of an adaptive optics system. In this paper, we propose a fast measuring algorithm with high resolution in the Shack-Hartmann wavefront sensor for an adaptive optics system. We designed ground isolated electrical devices whose differential data signals are used to control the deformable mirror and tip/tilt mirror for robust control. The conventional mass centroid algorithm in the Shack-Hartmann sensor to measure wavefront has been widely used and provided good measurement results. In this paper, the proposed fast measuring algorithm for measuring the wavefront combines the conventional mass centroid algorithm with a weighting factor. The weighting factor is a real value estimating the real center of mass in a wavefront spot image. This proposed wavefront measuring algorithm provided fast measurement results with high resolution from experimental tests.

A Study on Stability Improvement of High Energy Laser Beam Wavefront Correction System

  • Jung, Jongkyu;Lee, Sooman
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The adaptive optics for compensating for optical wavefront distortion due to atmospheric turbulence has recently been used in systems that improve beam quality by eliminating the aberrations of high power laser beam wavefront. However, unseen-mode, which can not be measured in the wavefront sensor, increases the instability of the laser beam wavefront compensator on the adaptive optics system. As a method for improving such instability, a mathematical method for limiting the number of singular values is used when generating the command matrix involved in generation of the drive command of the wavefront compensator. In the past, however, we have relied solely on experimental methods to determine the limiting range of the singular values. In this paper, we propose a criterion for determining the limiting range of the singular values using the driving characteristics and the correlation technique of the wavefront compensator's actuators and have proved its performance experimentally.