• Title/Summary/Keyword: adaptive nonlinear observer

Search Result 109, Processing Time 0.022 seconds

Tracking Control of Mechanical Systems with Partially Known Friction Model

  • Yang, Hyun-Suk;Martin C. Berg;Hong, Bum-Il
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.311-318
    • /
    • 2002
  • Two adaptive nonlinear friction compensation schemes are proposed for second-order nonlinear mechanical systems with a partially known nonlinear dynamic friction model to achieve asymptotic position and velocity tracking. The first scheme has auxiliary filtered states so that a simple open-loop observer can be used. The second one has a dual-observer structure to estimate two different nonlinear aspects of the friction state. Conditions for the parameter estimates to converge to the true parameter values are presented. Simulation results are utilized to show control performance and to demonstrate the convergence of the parameter estimates to their true values.

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

Robust Adaptive Fuzzy Observer Based Control for Unknown Nonlinear Systems (적응 퍼지 관측기를 이용한 비선형 시스템의 강인한 제어기 설계)

  • Ryu Tae-Yeong;Hyeon Chang-Ho;Kim Eun-Tae;Park Min-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.420-424
    • /
    • 2006
  • 본 논문에서는 외란을 갖는 불확실한 비선형 시스템을 제어하기 위하여 $H^{\infty}$ 제어를 이용한 강인 간접 적응 퍼지 관측기를 설계하여 상태변수를 관측하고 외란관측기를 설계하여 시스템의 외란을 제거하는 강인한 제어기를 구성한다. 제안된 외란관측기는 시스템과 외란의 대역폭보다 큰 궤환 이득을 가짐으로써 기존의 역플랜트 모델 또는 퍼지 기반의 외란관측기 보다 간단한 구조를 가지고 외란과 시스템 모델링 오차의 합을 관측해 낼 수 있다. 본 논문에서는 도립진자 시스템의 모의실험을 통하여 관측기, 외란관측기와 제어기의 성능을 평가한다.

  • PDF

Robust Adaptive Neural-Net Observer for Nonlinear Systems Using Filtering of Output Estimation Error (출력관측 오차의 필터링을 이용한 비선형 계통의 강인한 신경망 관측기 설계)

  • Park, Jang-Hyun;Yoon, Pil-Sang;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2320-2322
    • /
    • 2001
  • This paper describes the design of a robust adaptive neural-net(NN) observer for uncertain nonlinear dynamical system. The Lyapunov synthesis approach is used to guarantee a uniform ultimate boundedness property of the state estimation error, as well as of all other signals in the closed-loop system. Especially, for reducing the dynamic oder of the observer, we propose a new method in which no strictly positive real(SPR) condition is needed with on-line estimation of weights of the NNs. No a priori knowledge of an upper bounds on the uncertain terms is required. The theoretical results are illustrated through a simulation example.

  • PDF

Sensorless Vector Control of SPMSM using Adaptive Observer (적응관측기를 이용한 SPMSM의 센서리스 벡터제어)

  • Jung, Tack-Gi;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.200-202
    • /
    • 2003
  • This paper is proposed to position and speed control of surface permanent magnet synchronous motor(SPMSM) drive without mechanical sensor. A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d-q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.

  • PDF

Observer based Adaptive Control of Longitudinal Motion of Vehicles (관측자를 이용한 직진 주행 차량의 적응 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Lee, Hyoung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2608-2610
    • /
    • 2000
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed in this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

A Rotor Speed Estimation of Induction Motors Using Sliding Mode Cascade Observer (슬라이딩 모드 축차 관측기를 이용한 유도 전동기 속도추정)

  • 김응석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • A nonlinear adaptive speed observer is designed for the sensorless control of induction motors. In order to design the speed observer, the measurements of the stator currents and the estimates of the rotor fluxes are used. The sliding mode cascade observer is designed to estimate the time derivatives of the stator currents. The open-loop observer is designed to estimate the rotor fluxes and its time derivatives using the stator current derivatives. The adaptive observer is also designed to estimate the rotor resistance. Sequentially, the rotor speed is calculated using these estimated values. It is shown that the estimation errors of the corresponding states and the parameters converge to the specified residual set. It is also shown that the speed controller using these estimates is performed well. The simulation examples are represented to investigate the validity of the proposed observers for the sensorless control of induction motors.

Sliding mode control with adaptive VSS observer

  • Chen, Yi-Feng;Tsutomu Mita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1924-1929
    • /
    • 1991
  • The conventional sliding mode control and variable structure control (VSC) of nonlinear uncertain system are well known for their robust property and simplity of control law. However, the use of them is only pardonable on the assumption that the upper-bound of parameter variation or nonlinearity is known and that the complete information about state is available. Though the former has been solved with adaptive robust control theory recently, the latter seems not to be solved. In this paper, we try to solve this problem using the technique of VSS adaptive robust control theory. That is, we propose a VSS adaptive observer and a sliding mode control incorporated with this observer. We can prove the robust stability of the closed system applying the Lyapunov's second method.

  • PDF

A Study of Adaptive Load Torque Observer and Robust Precision Position Control of BLDD Motor (직접 구동용 BLDC 전동기의 정밀 Robust 위치제어 및 적응형 외란 관측기 연구)

  • 고종선;윤성구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.138-143
    • /
    • 1999
  • A new control method for the precision robust position control of a brushless DC(BLDC) motor for direct drive m motor(BLDDM) system using the asymptotically stable adaptive load torque observer is presented. A precision position c control is obtained for the BLDD motor system appro성mately linearized using the fieldlongrightarroworientation method. Many of t these motor systems have BLDD motor to obtain no backlashes. On the other hand, it has disadvantages such as the h high cost and more complex controller caused by the nonlinear characteristics. And the load torque disturbance is d directly affected to a motor shaft. To r밍ect this problem, stability analysis is calTied out using Lyapunov stability t theorem. Using this results, the stability is proved and load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent CUlTent having the fast response.

  • PDF

A Study on the Design of Adaptive Nonlinear Controller using Backstepping Technique (백스테핑 기법을 이용한 적응 비선형 제어기 설계에 관한 연구)

  • Kim, Min-Soo;Hyun, Keun-Ho;Lee, Hyung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.588-591
    • /
    • 1998
  • In this paper, we present a robust adaptive backstepping output feedback controller for nonlinear systems perturbed by unmodelled dynamics and disturbances. Especially, backstepping technique with modular approach is used to separately design controller and identifier. The design of identifier is based on the observer-based scheme which possesses a strict passivity property of observer error system. We will use Switching-${\sigma}$ modification at the update law and the modified control law to attenuate the effects of undodelled dynamics and disturbances for nonlinear systems.

  • PDF