• Title/Summary/Keyword: adaptive neuro-fuzzy network

Search Result 93, Processing Time 0.033 seconds

An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks (퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.53-61
    • /
    • 2006
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy nile as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Neuro-Fuzzy GMDH Model and Its Application to Forecasting of Mobile Communication (뉴로 - 퍼지 GMDH 모델 및 이의 이동통신 예측문제에의 응용)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, the fuzzy group method data handling-type(GMDH) neural networks and their application to the forecasting of mobile communication system are described. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to neural networks, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of neuro-fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the neuro-fuzzy GMDH. The GMDH-type neural networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the neuro-fuzzy GMDH. The computer program is developed and successful applications are shown in the field of estimating problem of mobile communication with the number of factors considered.

Adaptive Fuzzy-Neuro Controller for High Performance of Induction Motor (유도전동기의 고성능 제어를 위한 적응 퍼지-뉴로 제어기)

  • Choi, Jung-Sik;Nam, Su-Myung;Ko, Jae-Sub;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.315-320
    • /
    • 2005
  • This paper is proposed adaptive fuzzy-neuro controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of nor measured between the motor speed and output of a reference model. The control performance of the adaptive fuzy-neuro controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Design & application of adaptive fuzzy-neuro controllers (적응 퍼지-뉴로 제어기의 설계와 응용)

  • Kang, Kyeng-Wuon;Kim, Yong-Min;Kang, Hoon;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.710-717
    • /
    • 1993
  • In this paper, we focus upon the design and applications of adaptive fuzzy-neuro controllers. An intelligent control system is proposed by exploiting the merits of two paradigms, a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to update the fuzzy control rules on-line with the output error. And, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

Neuro-Fuzzy Systems: Theory and Applications

  • Lee, C.S. George
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.29.1-29
    • /
    • 2001
  • Neuro-fuzzy systems are multi-layered connectionist networks that realize the elements and functions of traditional fuzzy logic control/decision systems. A trained neuro-fuzzy system is isomorphic to a fuzzy logic system, and fuzzy IF-THEN rule knowledge can be explicitly extracted from the network. This talk presents a brief introduction to self-adaptive neuro-fuzzy systems and addresses some recent research results and applications. Most of the existing neuro-fuzzy systems exhibit several major drawbacks that lead to performance degradation. These drawbacks are the curse of dimensionality (i.e., fuzzy rule explosion), inability to re-structure their internal nodes in a changing environment, and their lack of ability to extract knowledge from a given set of training data. This talk focuses on our investigation of network architectures, self-adaptation algorithms, and efficient learning algorithms that will enable existing neuro-fuzzy systems to self-adapt themselves in an unstructured and uncertain environment.

  • PDF

Maximum Torque Control of IPMSM Drive using Adaptive Fuzzy-Neuro Controller (적응 퍼지-뉴로 제어기를 이용한 IPMSM 드라이브의 최대토크 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.126-128
    • /
    • 2007
  • This paper proposes maximum torque control of IPMSM drive using Adaptive Fuzzy-Neuro controller and artificial neural network(ANN). The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. This paper proposes the analysis results to verify the effectiveness of the Adaptive Fuzzy-Neuro and ANN controller.

  • PDF

FMMN-based Neuro-Fuzzy Classifier and Its Application (FMMN 기반 뉴로-퍼지 분류기와 응용)

  • 곽근창;전명근;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.259-262
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian menbership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.