• Title/Summary/Keyword: adaptive nearest neighbors

Search Result 12, Processing Time 0.025 seconds

On the Use of Modified Adaptive Nearest Neighbors for Classification (수정된 적응 최근접 방법을 활용한 판별분류방법에 대한 연구)

  • Maeng, Jin-Woo;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1093-1102
    • /
    • 2010
  • Even though the k-Nearest Neighbors Classification(KNNC) is one of the popular non-parametric classification methods, it does not consider the local features and class information for each observation. In order to overcome such limitations, several methods have been developed such as Adaptive Nearest Neighbors Classification(ANNC) and Modified k-Nearest Neighbors Classification(MKNNC). In this paper, we propose the Modified Adaptive Nearest Neighbors Classification(MANNC) that employs the advantages of both the ANNC and MKNNC. Through a real data analysis and a simulation study, we show that the proposed MANNC outperforms other methods in terms of classification accuracy.

On the use of weighted adaptive nearest neighbors for missing value imputation (가중 적응 최근접 이웃을 이용한 결측치 대치)

  • Yum, Yunjin;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.507-516
    • /
    • 2018
  • Widely used among the various single imputation methods is k-nearest neighbors (KNN) imputation due to its robustness even when a parametric model such as multivariate normality is not satisfied. We propose a weighted adaptive nearest neighbors imputation method that combines the adaptive nearest neighbors imputation method that accounts for the local features of the data in the KNN imputation method and weighted k-nearest neighbors method that are less sensitive to extreme value or outlier among k-nearest neighbors. We conducted a Monte Carlo simulation study to compare the performance of the proposed imputation method with previous imputation methods.

Adaptive Nearest Neighbors를 활용한 결측치 대치

  • 전명식;정형철
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.185-190
    • /
    • 2004
  • 비모수적 결측치 대치 방법으로 널리 사용되는 k-nearest neighbors(KNN) 방법은 자료의 국소적(local) 특징을 고려하지 않고 전체 자료에 대해 균일한 이웃의 개수 k를 사용하는 단점이 있다. 본 연구에서는 KNN의 대안으로 자료의 국소적 특징을 고려하는 adaptive nearest neighbors(ANN) 방법을 제안하였다. 나아가 microarray 자료의 경우에 대하여 결측치 대치를 통해 KNN과 ANN의 성능을 비교하였다.

  • PDF

Adaptive Nearest Neighbors for Classification (Adaptive Nearest Neighbors를 활용한 판별분류방법)

  • Jhun, Myoung-Shic;Choi, In-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.479-488
    • /
    • 2009
  • The ${\kappa}$-Nearest Neighbors Classification(KNNC) is a popular non-parametric classification method which assigns a fixed number ${\kappa}$ of neighbors to every observation without consideration of the local feature of the each observation. In this paper, we propose an Adaptive Nearest Neighbors Classification(ANNC) as an alternative to KNNC. The proposed ANNC method adapts the number of neighbors according to the local feature of the observation such as density of data. To verify characteristics of ANNC, we compare the number of misclassified observation with KNNC by Monte Carlo study and confirm the potential performance of ANNC method.

On the Use of Sequential Adaptive Nearest Neighbors for Missing Value Imputation (순차 적응 최근접 이웃을 활용한 결측값 대치법)

  • Park, So-Hyun;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1249-1257
    • /
    • 2011
  • In this paper, we propose a Sequential Adaptive Nearest Neighbor(SANN) imputation method that combines the Adaptive Nearest Neighbor(ANN) method and the Sequential k-Nearest Neighbor(SKNN) method. When choosing the nearest neighbors of missing observations, the proposed SANN method takes the local feature of the missing observations into account as well as reutilizes the imputed observations in a sequential manner. By using a Monte Carlo study and a real data example, we demonstrate the characteristics of the SANN method and its potential performance.

Missing values imputation for time course gene expression data using the pattern consistency index adaptive nearest neighbors (시간경로 유전자 발현자료에서 패턴일치지수와 적응 최근접 이웃을 활용한 결측값 대치법)

  • Shin, Heyseo;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.269-280
    • /
    • 2020
  • Time course gene expression data is a large amount of data observed over time in microarray experiments. This data can also simultaneously identify the level of gene expression. However, the experiment process is complex, resulting in frequent missing values due to various causes. In this paper, we propose a pattern consistency index adaptive nearest neighbors as a method of missing value imputation. This method combines the adaptive nearest neighbors (ANN) method that reflects local characteristics and the pattern consistency index that considers consistent degree for gene expression between observations over time points. We conducted a Monte Carlo simulation study to evaluate the usefulness of proposed the pattern consistency index adaptive nearest neighbors (PANN) method for two yeast time course data.

Random projection ensemble adaptive nearest neighbor classification (랜덤 투영 앙상블 기법을 활용한 적응 최근접 이웃 판별분류기법)

  • Kang, Jongkyeong;Jhun, Myoungshic
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.401-410
    • /
    • 2021
  • Popular in discriminant classification analysis, k-nearest neighbor classification methods have limitations that do not reflect the local characteristic of the data, considering only the number of fixed neighbors. Considering the local structure of the data, the adaptive nearest neighbor method has been developed to select the number of neighbors. In the analysis of high-dimensional data, it is common to perform dimension reduction such as random projection techniques before using k-nearest neighbor classification. Recently, an ensemble technique has been developed that carefully combines the results of such random classifiers and makes final assignments by voting. In this paper, we propose a novel discriminant classification technique that combines adaptive nearest neighbor methods with random projection ensemble techniques for analysis on high-dimensional data. Through simulation and real-world data analyses, we confirm that the proposed method outperforms in terms of classification accuracy compared to the previously developed methods.

Supervised learning and frequency domain averaging-based adaptive channel estimation scheme for filterbank multicarrier with offset quadrature amplitude modulation

  • Singh, Vibhutesh Kumar;Upadhyay, Nidhi;Flanagan, Mark;Cardiff, Barry
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.966-977
    • /
    • 2021
  • Filterbank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) is an attractive alternative to the orthogonal frequency division multiplexing (OFDM) modulation technique. In comparison with OFDM, the FBMC-OQAM signal has better spectral confinement and higher spectral efficiency and tolerance to synchronization errors, primarily due to per-subcarrier filtering using a frequency-time localized prototype filter. However, the filtering process introduces intrinsic interference among the symbols and complicates channel estimation (CE). An efficient way to improve the CE in FBMC-OQAM is using a technique known as windowed frequency domain averaging (FDA); however, it requires a priori knowledge of the window length parameter which is set based on the channel's frequency selectivity (FS). As the channel's FS is not fixed and not a priori known, we propose a k-nearest neighbor-based machine learning algorithm to classify the FS and decide on the FDA's window length. A comparative theoretical analysis of the mean-squared error (MSE) is performed to prove the proposed CE scheme's effectiveness, validated through extensive simulations. The adaptive CE scheme is shown to yield a reduction in CE-MSE and improved bit error rates compared with the popular preamble-based CE schemes for FBMC-OQAM, without a priori knowledge of channel's frequency selectivity.

A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm (적응형 k-NN 기법을 이용한 UTIS 속도정보 결측값 보정처리에 관한 연구)

  • Kim, Eun-Jeong;Bae, Gwang-Soo;Ahn, Gye-Hyeong;Ki, Yong-Kul;Ahn, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.66-77
    • /
    • 2014
  • UTIS(Urban Traffic Information System) directly collects link travel time in urban area by using probe vehicles. Therefore it can estimate more accurate link travel speed compared to other traffic detection systems. However, UTIS includes some missing data caused by the lack of probe vehicles and RSEs on road network, system failures, and other factors. In this study, we suggest a new model, based on k-NN algorithm, for imputing missing data to provide more accurate travel time information. New imputation model is an adaptive k-NN which can flexibly adjust the number of nearest neighbors(NN) depending on the distribution of candidate objects. The evaluation result indicates that the new model successfully imputed missing speed data and significantly reduced the imputation error as compared with other models(ARIMA and etc). We have a plan to use the new imputation model improving traffic information service by applying UTIS Central Traffic Information Center.

An Efficient Adaptive Bitmap-based Selective Tuning Scheme for Spatial Queries in Broadcast Environments

  • Song, Doo-Hee;Park, Kwang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1862-1878
    • /
    • 2011
  • With the advances in wireless communication technology and the advent of smartphones, research on location-based services (LBSs) is being actively carried out. In particular, several spatial index methods have been proposed to provide efficient LBSs. However, finding an optimal indexing method that balances query performance and index size remains a challenge in the case of wireless environments that have limited channel bandwidths and device resources (computational power, memory, and battery power). Thus, mechanisms that make existing spatial indexing techniques more efficient and highly applicable in resource-limited environments should be studied. Bitmap-based Spatial Indexing (BSI) has been designed to support LBSs, especially in wireless broadcast environments. However, the access latency in BSI is extremely large because of the large size of the bitmap, and this may lead to increases in the search time. In this paper, we introduce a Selective Bitmap-based Spatial Indexing (SBSI) technique. Then, we propose an Adaptive Bitmap-based Spatial Indexing (ABSI) to improve the tuning time in the proposed SBSI scheme. The ABSI is applied to the distribution of geographical objects in a grid by using the Hilbert curve (HC). With the information in the ABSI, grid cells that have no objects placed, (i.e., 0-bit information in the spatial bitmap index) are not tuned during a search. This leads to an improvement in the tuning time on the client side. We have carried out a performance evaluation and demonstrated that our SBSI and ABSI techniques outperform the existing bitmap-based DSI (B DSI) technique.