• Title/Summary/Keyword: adaptive method

Search Result 5,134, Processing Time 0.032 seconds

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Hierarchical Feature Based Block Motion Estimation for Ultrasound Image Sequences (초음파 영상을 위한 계층적 특징점 기반 블록 움직임 추출)

  • Kim, Baek-Sop;Shin, Seong-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.402-410
    • /
    • 2006
  • This paper presents a method for feature based block motion estimation that uses multi -resolution image sequences to obtain the panoramic images in the continuous ultrasound image sequences. In the conventional block motion estimation method, the centers of motion estimation blocks are set at the predetermined and equally spaced locations. This requires the large blocks to include at least one feature, which inevitably requires long estimation time. In this paper, we propose an adaptive method which locates the center of the motion estimation blocks at the feature points. This make it possible to reduce the block size while keeping the motion estimation accuracy The Harris-Stephen corner detector is used to get the feature points. The comer points tend to group together, which cause the error in the global motion estimation. In order to distribute the feature points as evenly as Possible, the image is firstly divided into regular subregions, and a strongest corner point is selected as a feature in each subregion. The ultrasound Images contain speckle patterns and noise. In order to reduce the noise artifact and reduce the computational time, the proposed method use the multi-resolution image sequences. The first algorithm estimates the motion in the smoothed low resolution image, and the estimated motion is prolongated to the next higher resolution image. By this way the size of search region can be reduced in the higher resolution image. Experiments were performed on three types of ultrasound image sequences. These were shown that the proposed method reduces both the computational time (from 77ms to 44ms) and the displaced frame difference (from 66.02 to 58.08).

Design and Performance Analysis of the Efficient Equalization Method for OFDM system using QAM in multipath fading channel (다중경로 페이딩 채널에서 QAM을 사용하는 OFDM시스템의 효율적인 등화기법 설계 및 성능분석)

  • 남성식;백인기;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1082-1091
    • /
    • 2000
  • In this paper, the efficient equalization method for OFDM(Orthogonal Frequency Division Multiflexing) System using the QAM(Quadrature Amplitude Modulation) in multipath fading channel is proposed in order to faster and more efficiently equalize the received signals that are sent over real channel. In generally, the one-tap linear equalizers have been used in the frequency-domain as the existing equalization method for OFDM system. In this technique, if characteristics of the channel are changed fast, the one-tap linear equalizers cannot compensate for the distortion due to time variant multipath channels. Therefore, in this paper, we use one-tap non-linear equalizers instead of using one-tap linear equalizers in the frequency-domain, and also use the linear equalizer in the time-domain to compensate the rapid performance reduction at the low SNR(Signal-to-Noise Ratio) that is the disadvantage of the non-linear equalizer. In the frequency-domain, when QAM signals, consisting of in-phase components and quadrature (out-phase) components, are sent over the complex channel, the only in-phase and quadrature components of signals distorted by the multipath fading are changed the same as signals distorted by the noise. So the cross components are canceled in the frequency-domain equalizer. The time-domain equalizer and the adaptive algorithm that has lower-error probability and fast convergence speed are applied to compensate for the error that is caused by canceling the cross components in the frequency-domain equalizer. In the time-domain, To compensate for the performance of frequency-domain equalizer the time-domain equalizes the distorted signals at a frame by using the Gold-code as a training sequence in the receiver after the Gold-codes are inserted into the guard signal in the transmitter. By using the proposed equalization method, we can achieve faster and more efficient equalization method that has the reduced computational complexity and improved performance.

  • PDF

Hand Gesture Segmentation Method using a Wrist-Worn Wearable Device

  • Lee, Dong-Woo;Son, Yong-Ki;Kim, Bae-Sun;Kim, Minkyu;Jeong, Hyun-Tae;Cho, Il-Yeon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.541-548
    • /
    • 2015
  • Objective: We introduce a hand gesture segmentation method using a wrist-worn wearable device which can recognize simple gestures of clenching and unclenching ones' fist. Background: There are many types of smart watches and fitness bands in the markets. And most of them already adopt a gesture interaction to provide ease of use. However, there are many cases in which the malfunction is difficult to distinguish between the user's gesture commands and user's daily life motion. It is needed to develop a simple and clear gesture segmentation method to improve the gesture interaction performance. Method: At first, we defined the gestures of making a fist (start of gesture command) and opening one's fist (end of gesture command) as segmentation gestures to distinguish a gesture. The gestures of clenching and unclenching one's fist are simple and intuitive. And we also designed a single gesture consisting of a set of making a fist, a command gesture, and opening one's fist in order. To detect segmentation gestures at the bottom of the wrist, we used a wrist strap on which an array of infrared sensors (emitters and receivers) were mounted. When a user takes gestures of making a fist and opening one's a fist, this changes the shape of the bottom of the wrist, and simultaneously changes the reflected amount of the infrared light detected by the receiver sensor. Results: An experiment was conducted in order to evaluate gesture segmentation performance. 12 participants took part in the experiment: 10 males, and 2 females with an average age of 38. The recognition rates of the segmentation gestures, clenching and unclenching one's fist, are 99.58% and 100%, respectively. Conclusion: Through the experiment, we have evaluated gesture segmentation performance and its usability. The experimental results show a potential for our suggested segmentation method in the future. Application: The results of this study can be used to develop guidelines to prevent injury in auto workers at mission assembly plants.

Influence of Children's Gender and Surrounding's Variables on School Readiness : Based on Educational Level of Parents, Educational Participation of Mother, Teaching Method of Teacher and Literacy Conditions of Home and Class (유아의 성과 주변 환경 변인이 학교준비도에 미치는 영향 : 부모의 교육수준, 어머니의 학습관여, 교사의 지도방법 및 가정과 교실의 문해환경을 중심으로)

  • Lee, Soo Hyun;Hwang, Hye Jung
    • Korean Journal of Childcare and Education
    • /
    • v.10 no.4
    • /
    • pp.177-203
    • /
    • 2014
  • This thesis is to figure out the influences of children's gender, educational level of parents, educational participation of the mother, teaching method of teacher and literacy conditions of home and class on preschool children's school readiness. The objects of this study are 141 preschool children under 5 years old, 141 parents and 42 class teachers. Test for School Readiness, Measure of Mother's Educational Participation, Measure of Teacher's Teaching Method, and Measures of Literacy Condition of Home and Class are used as a studying tool. Collected materials were analyzed by Three-way ANOVA, Correlation analysis of Spearman, product-moment correlation analysis of Pearson, and phased regression analysis. The results are as follows: First, there are meaningful differences between the gender of children and mother's educational level for the school readiness. Second, except for the home's literacy condition, children's gender, educational level of parents, educational participation of mother, teaching method of teacher and literacy conditions of class show the meaningful positive correlation with the children's school readiness. Third, the adaptive zone, which is the subordinated zone, is affected by the gender of children, and the knowledge zone is influenced by the mother's educational level most. These results will be useful for the basic data that can help to promote school readiness for children's parents and teachers.

A Space Skew and Crosstalk Cancellation Scheme Based on Indoor Spacial Information Using Self-Generating Sounds (자체발성음을 이용한 실내공간정보 획득 및 공간뒤틀림/상호간섭 제거기법)

  • Kim, Yeong-Moon;Yoo, Seung-Soo;Lee, Ki-Seung;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.246-253
    • /
    • 2010
  • In this paper, a method of removing the space skew and cross-talk cancellation is proposed where the self-generated signals from the subject are used to obtain the subject's location. In the proposed method, the good spatial sound image is maintained even when the listener moves from the sweet spot. Two major parts of the proposed method are as follows: listener position tracking using the stimuli from the subject and removal of the space skew and cross-talk signals. Listener position tracking is achieved by estimation of the time difference of arrival (TDoA). The position of the listener is then computed using the Talyer-series estimation method. The head-related transfer functions (HRTF) are used to remove the space skew and cross-talk signals, where the direction of the HRTF is given by the one estimated from the listener position tracking. The performance evaluation is carried out on the signals from the 100 subjects that are composed of the 50 female and 50 male subjects. The positioning accuracy is achieved by 70%~90%, under the condition that the mean squared positioning error is less than $0.07m^2$. The subjective listening test is also conducted where the 27 out of the 30 subjects are participated. According to the results, 70% of the subjects indicates that the overall quality of the reproduced sound from the proposed method are improved, regardless of the subject's position.

Extended Target State Vector Estimation using AKF (적응형 칼만 필터를 이용한 확장 표적의 상태벡터 추정 기법)

  • Cho, Doo-Hyun;Choi, Han-Lim;Lee, Jin-Ik;Jeong, Ki-Hwan;Go, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • This paper proposes a filtering method for effective state vector estimation of highly maneuvering target. It is needed to hit the point called 'sweet spot' to increase the kill probability in missile interception. In paper, a filtering method estimates the length of a moving target tracked by a frequency modulated continuous wave (FMCW) radar. High resolution range profiles (HRRPs) is generated from the radar echo signal and then it's integrated into proposed filtering method. To simulate the radar measurement which is close to real, the study on the properties of scattering point of the missile-like target has been conducted with ISAR image for different angle. Also, it is hard to track the target efficiently with existing Kalman filters which has fixed measurement noise covariance matrix R. Therefore the proposed method continuously updates the covariance matrix R with sensor measurements and tracks the target. Numerical simulations on the proposed method shows reliable results under reasonable assumptions on the missile interception scenario.

A Finite Element Simulation of Cancellous Bone Remodeling Based on Volumetric Strain (스폰지 뼈의 Remodeling 예측을 위한 체적 변형률을 이용한 유한요소 알고리즘)

  • Kim, Young;Vanderby, Ray
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.373-384
    • /
    • 2000
  • The goal of this paper is to develop a computational method to predict cancellous bone density distributions based upon continuum levels of volumetric strain. Volumetric strain is defined as the summation of normal strains, excluding shear strains, within an elastic range of loadings. Volumetric strain at a particular location in a cancellous structure changes with changes of the boundary conditions (prescribed displacements, tractions, and pressure). This change in the volumetric strain is postulated to predict the adaptive change in the bone apparent density. This bone remodeling theory based on volumetric strain is then used with the finite element method to compute the apparent density distribution for cancellous bone in both lumbar spine and proximal femur using an iterative algorithm, considering the dead zone of strain stimuli. The apparent density distribution of cancellous bone predicted by this method has the same pattern as experimental data reported in the literature (Wolff 1892, Keller et al. 1989, Cody et al. 1992). The resulting bone apparent density distributions predict Young's modulus and strength distributions throughout cancellous bone in agreement with the literature (Keller et al. 1989, Carter and Hayes 1977). The method was convergent and sensitive to changes in boundary conditions. Therefore, the computational algorithm of the present study appears to be a useful approach to predict the apparent density distribution of cancellous bone (i.e. a numerical approximation for Wolff's Law)

  • PDF

Genes Associated with Radiation Adaptive Response Induced by Low Level Radiation from $^{99m}Tc$ in Human Cell Lines (인체세포주에서 저선량 $^{99m}Tc$에 의해 발현되는 방사선 적응반응에 관련된 유전자에 관한 연구)

  • Kwon, An-Sung;Bom, Hee-Seung;Choi, Chan;Kim, Ji-Yeul;Lim, Wook-Bin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.5
    • /
    • pp.313-323
    • /
    • 2001
  • Purpose: The purpose of this study was to search activated genes that could be related to radiation adaptive response (RAR) induced by low-level radiation from $^{99m}Tc$ in human cell lines. Methods: We used gene discovery array (GDA) and representational difference analysis (RDA) methods. $^{99m}Tc$-pertechnetate was added to $2{\times}106/mL$ NC-37 cells (human lymphoblastic cells) to make concentrations ranging from 148 MBq/mL to 148 Bq/mL by serial 10 fold dilutions. After 44 hours, 2 Gy gamma irradiation was given to them using a Cs-137 cell irradiator. Results: As compared to the control (Con) group to which no $^{99m}Tc$ was added, those cells to which 148 and 14.8 KBq of $^{99m}Tc$ were added showed significantly lower damage to chromosomes, which was evaluated by metaphase analysis. Cells with 148 KBq $^{99m}Tc$ (T148 group) showed most significant protection. Activated genes in the T148 group as compared to Con group were evaluated by GDA and GDA methods. GDA revealed genes of casein kinase 2 (CK2) beta chain, immunoglobulins (lg), human leukocyte antigen (HLA)-B, and two novel genes. Twenty RAR related clones were selected by RDA method. The size of those genes was from 234 to 603 base pairs. Conclusions: RAR was induced by low dose irradiation from $^{99m}Tc$ in NC-37 cell lines. Genes related to the response included CK2, lg, HLA-B in human lymphoblastic cell lines.

  • PDF

Optimal Spatial Scale for Land Use Change Modelling : A Case Study in a Savanna Landscape in Northern Ghana (지표피복변화 연구에서 최적의 공간스케일의 문제 : 가나 북부지역의 사바나 지역을 사례로)

  • Nick van de Giesen;Paul L. G. Vlek;Park Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.221-241
    • /
    • 2005
  • Land Use and Land Cover Changes (LUCC) occur over a wide range of space and time scales, and involve complex natural, socio-economic, and institutional processes. Therefore, modelling and predicting LUCC demands an understanding of how various measured properties behave when considered at different scales. Understanding spatial and temporal variability of driving forces and constraints on LUCC is central to understanding the scaling issues. This paper aims to 1) assess the heterogeneity of land cover change processes over the landscape in northern Ghana, where intensification of agricultural activities has been the dominant land cover change process during the past 15 years, 2) characterise dominant land cover change mechanisms for various spatial scales, and 3) identify the optimal spatial scale for LUCC modelling in a savanna landscape. A multivariate statistical method was first applied to identify land cover change intensity (LCCI), using four time-sequenced NDVI images derived from LANDSAT scenes. Three proxy land use change predictors: distance from roads, distance from surface water bodies, and a terrain characterisation index, were regressed against the LCCI using a multi-scale hierarchical adaptive model to identify scale dependency and spatial heterogeneity of LUCC processes. High spatial associations between the LCCI and land use change predictors were mostly limited to moving windows smaller than 10$\times$10km. With increasing window size, LUCC processes within the window tend to be too diverse to establish clear trends, because changes in one part of the window are compensated elsewhere. This results in a reduced correlation between LCCI and land use change predictors at a coarser spatial extent. The spatial coverage of 5-l0km is incidentally equivalent to a village or community area in the study region. In order to reduce spatial variability of land use change processes for regional or national level LUCC modelling, we suggest that the village level is the optimal spatial investigation unit in this savanna landscape.