• 제목/요약/키워드: adaptive histogram

검색결과 150건 처리시간 0.029초

밝기 보존을 위한 동적 영역 분할을 이용한 적응형 명암비 향상기법 (An Adaptive Contrast Enhancement Method using Dynamic Range Segmentation for Brightness Preservation)

  • 박규희;조화현;이승준;윤종호;최명렬
    • 전기학회논문지P
    • /
    • 제57권1호
    • /
    • pp.14-21
    • /
    • 2008
  • In this paper, we propose an adaptive contrast enhancement method using dynamic range segmentation. Histogram Equalization (HE) method is widely used for contrast enhancement. However, histogram equalization method is not suitable for commercial display because it may cause undesirable artifacts due to the significant change in brightness. The proposed algorithm segments the dynamic range of the histogram and redistributes the pixel intensities by the segment area ratio. The proposed method may cause over compressed effect when intensity distribution of an original image is concentrated in specific narrow region. In order to overcome this problem, we introduce an adaptive scale factor. The experimental results show that the proposed algorithm suppresses the significant change in brightness and provides wide histogram distribution compared with histogram equalization.

Histogram을 이용한 적응형 내시경 Image Enhancer의 개발 (Development of Adaptive Endoscope Image Enhancer Using Histogram)

  • 이상학;김정훈;송철규;이영묵;김원기;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.345-348
    • /
    • 1997
  • Endoscope image is the shape that a doctor sees inside of patient through endoscope. The characteristics of these images are much effected by the light source of endoscope, specially areas in short distance from a light have much light source and look clear, but areas in long distance from a light look dark relatively because of little light quantity. So we developed a new level adaptive image enhancer for the dark area in a endoscope image. The algorithm we made consists of three parts ; 1) Classification of histogram in segmented area 2) Smoothing and Adaptive Histogram Equalization 3) Adaptive Histogram Modification.

  • PDF

Adaptive local histogram modification method for dynamic range compression of infrared images

  • Joung, Jihye
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, we propose an effective dynamic range compression (DRC) method of infrared images. A histogram of infrared images has narrow dynamic range compared to visible images. Hence, it is important to apply the effective DRC algorithm for high performance of an infrared image analysis. The proposed algorithm for high dynamic range divides an infrared image into the overlapped blocks and calculates Shannon's entropy of overlapped blocks. After that, we classify each block according to the value of entropy and apply adaptive histogram modification method each overlapped block. We make an intensity mapping function through result of the adaptive histogram modification method which is using standard-deviation and maximum value of histogram of classified blocks. Lastly, in order to reduce block artifact, we apply hanning window to the overlapped blocks. In experimental result, the proposed method showed better performance of dynamic range compression compared to previous algorithms.

영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색 (Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method)

  • 박정만;유기형;장세영;한득수;곽훈성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

이완법을 이용한 형광안저화상의 국소특징 검출 (Local Feature Detection on the Ocular Fundus Fluorescein angiogram Using Relaxation Process)

  • ;하영호;홍재근;김수중
    • 대한전자공학회논문지
    • /
    • 제24권5호
    • /
    • pp.856-862
    • /
    • 1987
  • An local adaptive image segmentatin algorithm for local feature detection and effective clustering of unimodal histogram shape are proposed. Local adaptive difference image and its histogram are obtained from the input image. The parameters are derived from the histogram and used for the segmentation based on relaxatin process. The results showed effective region segmentation and good noise cleaning for the ocular fundus fluorescein angiogram which has low contrast and unimodal histogram.

  • PDF

Content-Based Image Retrieval Using Adaptive Color Histogram

  • Yoo Gi-Hyoung;Park Jung-Man;You Kang-Soo;Yoo Seung-Sun;Kwak Hoon-Sung
    • 한국통신학회논문지
    • /
    • 제30권9C호
    • /
    • pp.949-954
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. Dey could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram(ACH) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that ACH's can give superior results to color histograms for image retrieval.

퍼지를 이용한 X-ray 영상의 대비제한 적응 히스토그램 평활화 한계점 결정 (The Clip Limit Decision of Contrast Limited Adaptive Histogram Equalization for X-ray Images using Fuzzy Logic)

  • 조현지;계희원
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.806-817
    • /
    • 2015
  • The contrast limited adaptive histogram equalization(CLAHE) is an advanced method for the histogram equalization which is a common contrast enhancement technique. The CLAHE divides the image into sections, and applies the contrast limited histogram equalization for each section. X-ray images can be classified into three areas: skin, bone, and air area. In clinical application, the interest area is limited to the skin or bone area depending on the diagnosis region. The CLAHE could deteriorate X-ray image quality because the CLAHE enhances the area which doesn't need to be enhanced. In this paper, we propose a new method which automatically determines the clip limit of CLAHE's parameter to improve X-ray image quality using fuzzy logic. We introduce fuzzy logic which is possible to determine clip limit proportional to the interest of users. Experimental results show that the proposed method improve images according to the user's preference by focusing on the subject.

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

Hand Segmentation Using Depth Information and Adaptive Threshold by Histogram Analysis with color Clustering

  • Fayya, Rabia;Rhee, Eun Joo
    • 한국멀티미디어학회논문지
    • /
    • 제17권5호
    • /
    • pp.547-555
    • /
    • 2014
  • This paper presents a method for hand segmentation using depth information, and adaptive threshold by means of histogram analysis and color clustering in HSV color model. We consider hand area as a nearer object to the camera than background on depth information. And the threshold of hand color is adaptively determined by clustering using the matching of color values on the input image with one of the regions of hue histogram. Experimental results demonstrate 95% accuracy rate. Thus, we confirmed that the proposed method is effective for hand segmentation in variations of hand color, scale, rotation, pose, different lightning conditions and any colored background.

영상 강조를 위한 Adaptive Dynamic Range Linear Stretching 기법 (An Adaptive Dynamic Range Linear Stretching Method for Contrast Enhancement)

  • 김용민;최재완;김용일
    • 대한원격탐사학회지
    • /
    • 제26권4호
    • /
    • pp.395-401
    • /
    • 2010
  • 영상 강조 기법은 영상의 낮은 명암 대비(contrast)를 노이즈나 블러링(blurring)의 제거, 명암 대비의 증가, 세밀함의 확장 등을 통해 시각적으로 향상시키는 작업을 말한다. 본 논문에서는 기존에 제안되어 온 여러 영상 강조 기법들의 장점을 기반으로 한 Adaptive dynamic range linear stretching(ADRLS) 영상 강조 기법을 제안한다. ADRLS 기법은 입력 영상의 히스토그램 분할과 동시에 adaptive scale factor를 적용하여 다수의 서브 히스토그램을 생성하는 것에 초점을 맞추고 있으며, 생성된 서브 히스토그램은 최종적으로 선형 강조(Linear Stretching, LS) 기법이 적용되어 영상 강조를 수행하게 된다. 제안된 기법의 성능을 검증하기 위해 기존의 히스토그램 선형 강조 기법, 히스토그램 평활화(Histogram Equalization, HE) 기법과 비교 평가하였으며, 그 결과 기존의 기법들에 비해 영상의 과도한 밝기 변화를 억제함으로써 영상의 시각적인 특성을 유지하고, 입력 영상이 갖고 있는 히스토그램의 특성을 보존하는 효과를 보였다.