• Title/Summary/Keyword: adaptive genetic algorithm

Search Result 227, Processing Time 0.027 seconds

A Design of Fuzzy Power System Stabilizer using Adaptive Evolutionary Computation (적응진화연산을 이용한 퍼지-전력계통안정화장치 설계)

  • Hwang, Gi-Hyun;Park, June-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.704-711
    • /
    • 1999
  • This paper presents a design of fuzzy power system stabilizer (FPSS) using adaptive evolutionary computation (AEC). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. FPSS shows better control performances than conventional power system stabilizer (CPSS) in three-phase fault with heavy load which is used when tuning FPSS. To show the robustness of the proposed FPSS, it is appliedto damp the low frequency oscillations caused by disturbances such as three-phase fault with normal and light load, the angle deviation of generator with normal and light load and the angle deviation of generator with heavy load. Proposed FPSS shows better robustness than CPSS.

  • PDF

Received Power Optimization applying Adaptive Genetic Algorithm in Visible light communication (가시광통신에서 적응형 유전자 알고리즘을 적용한 수신전력 최적화)

  • Lee, Byung-Jin;Kim, Yong-Won;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.147-154
    • /
    • 2013
  • To provide a method for optimizing the variation range of the received power is applied to Adaptive Genetic Algorithm in a LED communication environment. By optimizing the power distribution dynamically for mobile or fixed using a genetic algorithm, to eliminate the need for a system design that is customized to be independent of the movement pattern of the user's adaptability, and environmental properties. It is possible to improve easily the convenience of the user. The room power deviation from any location can be reduced by reducing the energy. the simulation results, the proposed method does not exist obstacles in an empty room with power deviation $10.5{\mu}W$ decreased 10 percent to reduce the deviation of the received power is shown that. In comparison with conventional methods, convergence to the optimal value is improved, the genetic algorithm proposed was confirmed to be efficient in terms of energy savings.

Reliability Optimization Problems using Adaptive Hybrid Genetic Algorithms

  • Minoru Mukuda;Yun, Young-Su;Mitsuo Gen
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.179-182
    • /
    • 2003
  • This paper proposes an adaptive hybrid genetic algorithm (aHGA) for effectively solving the complex reliability optimization problems. The proposed aHGA uses a loca1 search technique and an adaptive scheme for respectively constructing hybrid algorithm and adaptive ability. For more various comparisons with the proposed adaptive algorithm, other aHGAs with conventional adaptive schemes are considered. These aHGAs are tested and analyzed using two complex reliability optimization problems. Numerical result shows that the proposed aHGA outperforms the other competing aHGAs.

  • PDF

Optimal proportioning of concrete aggregates using a self-adaptive genetic algorithm

  • Amirjanov, Adil;Sobol, Konstantin
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.411-421
    • /
    • 2005
  • A linear programming problem of the optimal proportioning of concrete aggregates is discussed; and a self-adaptive genetic algorithm is developed to solve this problem. The proposed method is based on changing a range of variables for capturing the feasible region of the optimum solution. A computational verification of this method is compared with the results of the linear programming.

An Adaptive Genetic Algorithm with a Fuzzy Logic Controller for Solving Sequencing Problems with Precedence Constraints (선행제약순서결정문제 해결을 위한 퍼지로직제어를 가진 적응형 유전알고리즘)

  • Yun, Young-Su
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.1-22
    • /
    • 2011
  • In this paper, we propose an adaptive genetic algorithm (aGA) approach for effectively solving the sequencing problem with precedence constraints (SPPC). For effective representation of the SPPC in the aGA approach, a new representation procedure, called the topological sort-based representation procedure, is used. The proposed aGA approach has an adaptive scheme using a fuzzy logic controller and adaptively regulates the rate of the crossover operator during the genetic search process. Experimental results using various types of the SPPC show that the proposed aGA approach outperforms conventional competing approaches. Finally the proposed aGA approach can be a good alternative for locating optimal solutions or sequences for various types of the SPPC.

An Adaptive Clustering Algorithm Based on Genetic Algorithm (유전자 알고리즘 기반 적응 군집화 알고리즘)

  • Park Namhyun;Ahn Chang Wook;Ramakrishna R.S.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.459-462
    • /
    • 2004
  • This paper proposes a genetically inspired adaptive clustering algorithm. The algorithm automatically discovers the actual number of clusters and efficiently performs clustering without unduly compromising cluster purity. Chromosome encoding that ensures the correct number of clusters and cluster purity is discussed. The required fitness function is desisted on the basis of modified similarity criteria and genetic operators. These are incorporated into the proposed adaptive clustering algorithm. Experimental results show the efficiency of the clustering algorithm on synthetic data sets and real world data sets.

  • PDF

Nonlinear IIR filter parameter estimation using the genetic algorithm (유전자 알고리듬을 이용한 비선형 IIR 필터의 파라미터 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.15-17
    • /
    • 2005
  • Recently genetic algorithm techniques have widely used in adaptive and control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of genetic algorithm constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a genetic algorithm used for identification of the process dynamics of nonlinear IIR filter and it was shown that this method offered superior capability over the genetic algorithm. A genetic algorithm is used to solve the parameter identification problem for linear and nonlinear digital filters. This paper goal estimate nonlinear IIR filter parameter using the genetic algorithm.

  • PDF

FIR filter parameter estimation using the genetic algorithm (유전자 알고리듬을 이용한 FIR 필터의 파라미터 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.502-504
    • /
    • 2005
  • Recently genetic algorithm techniques have widely used in adaptive and control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of genetic algorithm constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a genetic algorithm used for identification of the process dynamics of FIR filter and it was shown that this method offered superior capability over the genetic algorithm. A genetic algorithm is used to solve the parameter identification problem for linear and nonlinear digital filters. This paper goal estimate FIR filter parameter using the genetic algorithm.

  • PDF

A New Approach to Adaptive HFC-based GAs: Comparative Study on Crossover Genetic Operator (적응 HFC 기반 유전자알고리즘의 새로운 접근: 교배 유전자 연산자의 비교연구)

  • Kim, Gil-Sung;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1636-1641
    • /
    • 2008
  • In this study, we introduce a new approach to Parallel Genetic Algorithms (PGA) which combines AHFCGA with crossover operator. As to crossover operators, we use three types of the crossover operators such as modified simple crossover(MSX), arithmetic crossover(AX), and Unimodal Normal Distribution Crossover(UNDX) for real coding. The AHFC model is given as an extended and adaptive version of HFC for parameter optimization. The migration topology of AHFC is composed of sub-populations(demes), the admission threshold levels, and admission buffer for the deme of each threshold level through succesive evolution process. In particular, UNDX is mean-centric crossover operator using multiple parents, and generates offsprings obeying a normal distribution around the center of parents. By using test functions having multimodality and/or epistasis, which are commonly used in the study of function parameter optimization, Experimental results show that AHFCGA can produce more preferable output performance result when compared to HFCGA and RCGA.

Design and Implementation of a Adapted Genetic Algorithm for Circuit Placement (어댑티드 회로 배치 유전자 알고리즘의 설계와 구현)

  • Song, Ho-Jeong;Kim, Hyun-Gi
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.2
    • /
    • pp.13-20
    • /
    • 2021
  • Placement is a very important step in the VLSI physical design process. It is the problem of placing circuit modules to optimize the circuit performance and reliability of the circuit. It is used at the layout level to find strongly connected components that can be placed together in order to minimize the layout area and propagation delay. The most popular algorithms for circuit placement include the cluster growth, simulated annealing, integer linear programming and genetic algorithm. In this paper we propose a adapted genetic algorithm searching solution space for the placement problem, and then compare it with simulated annealing and genetic algorithm by analyzing the results of each implementation. As a result, it was found that the adaptive genetic algorithm approaches the optimal solution more effectively than the simulated annealing and genetic algorithm.