• Title/Summary/Keyword: adaptive evolutionary algorithm

Search Result 81, Processing Time 0.029 seconds

Evolutionary Computation for the Real-Time Adaptive Learning Control(II) (실시간 적응 학습 제어를 위한 진화연산(II))

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.730-734
    • /
    • 2001
  • In this study in order to confirm the algorithms that are suggested from paper (I) as the experimental result, as the applied results of the hydraulic servo system are very strong a non-linearity of the fluid in the computer simulation, the real-time adaptive learning control algorithms is validated. The evolutionary strategy has characteristics that are automatically. adjusted in search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accord with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time as the description of the paper (I). The possibility of a new approaching algorithm that is suggested from the computer simulation of the paper (I) would be proved as the verification of a real-time test and the consideration its influence from the actual experiment.

  • PDF

The Self-tuning PID Control Based on Real-time Adaptive Learning Evolutionary Algorithm (실시간 적응 학습 진화 알고리듬을 이용한 자기 동조 PID 제어)

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1463-1468
    • /
    • 2003
  • This paper presented the real-time self-tuning learning control based on evolutionary computation, which proves its superiority in finding of the optimal solution at the off-line learning method. The individuals of the populations are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations is proposed. It is possible to control the control object slightly varied as time changes. As the state value of the control object is generated, evolutionary strategy is applied each sampling time because the learning process of an estimation, selection, mutation is done in real-time. These algorithms can be applied; the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

Adaptive Learning Control of Electro-Hydraulic Servo System Using Real-Time Evolving Neural Network Algorithm (실시간 진화 신경망 알고리즘을 이용한 전기.유압 서보 시스템의 적응 학습제어)

  • Jang, Seong-Uk;Lee, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.584-588
    • /
    • 2002
  • The real-time characteristic of the adaptive leaning control algorithms is validated based on the applied results of the hydraulic servo system that has very strong a non-linearity. The evolutionary strategy automatically adjusts the search regions with natural competition among many individuals. The error that is generated from the dynamic system is applied to the mutation equation. Competitive individuals are reduced with automatic adjustments of the search region in accordance with the error. In this paper, the individual parents and offspring can be reduced in order to apply evolutionary algorithms in real-time. The feasibility of the newly proposed algorithm was demonstrated through the real-time test.

Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Lee, Hwa-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.

Implementation and Design of a Fuzzy Power System Stabilizer Using an Adaptive Evolutionary Algorithm

  • Hwang, Gi-Hyun;Lee, Min-Jung;Park, June-Ho;Kim, Gil-Jung
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.181-190
    • /
    • 2003
  • This paper presents the design of a fuzzy power system stabilizer (FPSS) using an adaptive evolutionary algorithm (AEA). AEA consists of genetic algorithm (GA) for a global search capability and evolution strategy (ES) for a local search in an adaptive manner when the present generation evolves into the next generation. AEA is used to optimize the membership functions and scaling factors of the FPSS. To evaluate the usefulness of the FPSS, we applied it to a single-machine infinite bus system (SIBS) and a power system simulator at the Korea Electrotechnology Research Institute. The FPSS displays better control performance than the conventional power system stabilizer (CPSS) for a three-phase fault in heavy load, which is used when tuning FPSS. To show the robustness of the FPSS, it is applied with disturbances such as change of mechanical torque and three-phase fault in nominal and heavy load, etc. The FPSS also demonstrates better robustness than the CPSS. Experimental results indicate that the FPSS has good system damping under various disturbances such as one-line to ground faults, line parameter changes, transformer tap changes, etc.

Design of a Fuzzy Logic Controller Using an Adaptive Evolutionary Algorithm for DC Series Motors (적응진화 알고리즘을 사용한 DC 모터 퍼지 제어기 설계에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1019-1028
    • /
    • 2007
  • In this paper, adaptive evolutionary algorithm(AEA) is proposed, which uses both genetic algorithm(GA) with good global search capability and evolution strategy(ES) with good local search capability in an adaptive manner, when population evolves to the next generation. In the reproduction procedure, proportion of the population for GA and ES is adaptively determined according to their fitness. The AEA is used to design membership functions and scaling factors of the fuzzy logic controller(FLC). To evaluate the performance of the proposed FLC design method, we make an experiment on the FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than PD controller.

PC Cluster based Parallel Adaptive Evolutionary Algorithm for Service Restoration of Distribution Systems

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Kim, Hyung-Su;Hwang, Gi-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.435-447
    • /
    • 2006
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.

Distribution System Reconfiguration Using the PC Cluster based Parallel Adaptive Evolutionary Algorithm

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June Ho;Hwang Gi-Hyun;Yoon Yoo-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.269-279
    • /
    • 2005
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to find the optimal switch position because of its numerous local minima. In this investigation, a parallel AEA was developed for the reconfiguration of the distribution system. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of GA and the local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC-cluster system consisting of 8 PCs·was developed. Each PC employs the 2 GHz Pentium IV CPU, and is connected with others through switch based fast Ethernet. The new developed algorithm has been tested and is compared to distribution systems in the reference paper to verify the usefulness of the proposed method. From the simulation results, it is found that the proposed algorithm is efficient and robust for distribution system reconfiguration in terms of the solution quality, speedup, efficiency, and computation time.

A Fuzzy Logic Controller for Speed Control of a DC Series Motor Using an Adaptive Evolutionary Computation

  • Hwang, Gi-Hyun;Hwang, Hyun-Joon;Kim, Dong-Wan;Park, June-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, an Adaptive Evolutionary Computation(AEC) is proposed. AEC uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner is order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. AEC is used to design the membership functions and the scaling factors of fuzzy logic controller (FLC). To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than that of PD controller.

  • PDF

A Design of Fuzzy Logic Controllers for High-Angle-of-Attack Flight Control of Aircraft Using Adaptive Evolutionary Algorithms (적응진화 알고리즘을 이용한 항공기의 고공격각 비행 제어를 위한 퍼지 제어기 설계)

  • Won, Taep-Hyun;Hwang, Gi-Hyun;Park, June-Ho;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.995-1002
    • /
    • 2000
  • In this paper, fuzzy logic controllers(FLC) are designed for control of flight. For tuning FLC, we used adaptive evolutionary algorithms(AEA) which uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. We used AEA to search for optimal settings of the membership functions shape and gains of the inputs and outputs of FLC. Finally, the proposed controller is applied to the high-angle-of-attack flight system for a supermaneuverable version of the f-18 aircraft and compares with other methods.

  • PDF