• Title/Summary/Keyword: adaptive capacity

Search Result 387, Processing Time 0.036 seconds

Development of Evaluation Model of Pumping and Drainage Station Using Performance Degradation Factors (농업기반시설물 양·배수장의 성능저하 요인분석 및 성능평가 모델 개발)

  • Lee, Jonghyuk;Lee, Sangik;Jeong, Youngjoon;Lee, Jemyung;Yoon, Seongsoo;Park, Jinseon;Lee, Byeongjoon;Lee, Joongu;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.75-86
    • /
    • 2019
  • Recently, natural disasters due to abnormal climates are frequently outbreaking, and there is rapid increase of damage to aged agricultural infrastructure. As agricultural infrastructure facilities are in contact with water throughout the year and the number of them is significant, it is important to build a maintenance management system. Especially, the current maintenance management system of pumping and drainage stations among the agricultural facilities has the limit of lack of objectivity and management personnel. The purpose of this study is to develop a performance evaluation model using the factors related to performance degradation of pumping and drainage facilities and to predict the performance of the facilities in response to climate change. In this study, we focused on the pumping and drainage stations belonging to each climatic zone separated by the Korea geographical climatic classification system. The performance evaluation model was developed using three different statistical models of POLS, RE, and LASSO. As the result of analysis of statistical models, LASSO was selected for the performance evaluation model as it solved the multicollinearity problem between variables, and showed the smallest MSE. To predict the performance degradation due to climate change, the climate change response variables were classified into three categories: climate exposure, sensitivity, and adaptive capacity. The performance degradation prediction was performed at each facility using the developed performance evaluation model and the climate change response variables.

A Study on Change in Climate Change Adaptation Governance of Korean Local Governments - Focusing on the Process of Developing the Climate Change Adaptation Action Plan and Its Implementation Stage - (지방자치단체 기후변화 적응 거버넌스 변화 연구 - 기후변화 적응대책 세부시행계획 수립 단계와 이후를 중심으로 -)

  • Koh, Jaekyung
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.99-108
    • /
    • 2017
  • This study aims to analyze the features of adaptation governance of local governments by applying a multi-level governance framework, and to draw policy implications. We analyzed changes in governance of 17 metropolitan cities/provinces, and 33 municipalities in terms of horizontal and vertical cooperation in the process of developing 'The Climate Change Adaptation Action Plan' and its implementation stage. The result shows that the plan contributed to the higher level of vertical cooperation between the central and the local governments to a certain extent, however, during the implementation stage, the level of the partnership decreased due to the absence of governance mechanism. These trends were statistically significant at the level of municipalities. The role of Korea Adaptation Center for Climate Change (KACCC) was also diminished after establishing the plan. The horizontal partnership level among the relevant departments of the local governments showed no significant change as the level was low even in the planning stage. Though Public-Private Partnership (PPP) has increased a bit, it was statistically significant only in the municipalities. Moreover, there was no governance mechanism for PPP or it did not work properly. Based on the results above, it is recommended that the effectiveness of the plans should be increased and support for climate change partnerships or forums at a local level that promotes adaptive capacity is needed. The role of metropolitan cities and provinces should be strengthened through building a multi-level partnership structure. Governance institutionalizing for monitoring and evaluation is also needed.

Comparative Analysis of Methods to Support Dynamic Adaptive Streaming over HTTP (HTTP 기반 동적 적응형 스트리밍 연구의 비교·분석)

  • Jin, Feng;Kim, Mijung;Yoon, Ilchul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.527-530
    • /
    • 2014
  • DASH is a well-known streaming technology, which was proposed in 2010 by MPEG and standardized in 2011. Major multimedia contents service providers, including Apple, Microsoft, and Adobe are all using this technology to support their media streaming services. Whenever a new service is requested to the server, the DASH technology helps servicing the multimedia streaming to client by recognizing the capacity of network and by adapting the quality of the multimedia contents. In DASH, the quality of multimedia contents will be automatically lowered to meet the fluctuating network status, when undesirable breaks interrupt the network. In this paper, we classified and analysed the advantages and disadvantages of DASH researches in three aspects: bit-rate measurement method, bandwidth aggregation method; rate adaptation metrics, algorithms and logics; user's experiences and QoE.

  • PDF

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

Suggestion of Quantitative Assessment of Groundwater Resilience (지하수 리질리언스의 정량적 평가 방안)

  • Yu, Soonyoung;Kim, Ho-Rim;Yun, Seong-Taek;Ryu, Dong-Woo;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.60-76
    • /
    • 2021
  • The concept of resilience seems applicable for sustainable groundwater management. The resilience is broadly defined as the ability of a system to resist changes by external forces (EFs), and has been used for disaster management and climate change adaptation, including the groundwater resilience to climate change in countries where groundwater is a major water resource, whereas not yet in the geological society of South Korea. The resilience is qualitatively assessed using the absorptive, adaptive, and restorative capacity representing the internal robustness, self-organization, and external recovery resources, respectively, while quantitatively using the system impact (SI) and recovery effort (RE). When the groundwater is considered a complicated system where physicochemical, biological, and geological components interact, the groundwater resilience can be defined as the ability of groundwater to maintain the targeted quality and quantity at any EFs. For the quantitative assessment, however, the resilience should be specified to an EF and measurable parameters should be available for SI and RE. This study focused on groundwater resilience to two EFs in urban areas, i.e., pollution due to land use change and groundwater withdrawal for underground structures. The resilience to each EF was assessed using qualitative components, while measurements for SI and RE were discussed.

A Quantitative Approach to Minimize Energy Consumption in Cloud Data Centres using VM Consolidation Algorithm

  • M. Hema;S. KanagaSubaRaja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.312-334
    • /
    • 2023
  • In large-scale computing, cloud computing plays an important role by sharing globally-distributed resources. The evolution of cloud has taken place in the development of data centers and numerous servers across the globe. But the cloud information centers incur huge operational costs, consume high electricity and emit tons of dioxides. It is possible for the cloud suppliers to leverage their resources and decrease the consumption of energy through various methods such as dynamic consolidation of Virtual Machines (VMs), by keeping idle nodes in sleep mode and mistreatment of live migration. But the performance may get affected in case of harsh consolidation of VMs. So, it is a desired trait to have associate degree energy-performance exchange without compromising the quality of service while at the same time reducing the power consumption. This research article details a number of novel algorithms that dynamically consolidate the VMs in cloud information centers. The primary objective of the study is to leverage the computing resources to its best and reduce the energy consumption way behind the Service Level Agreement (SLA)drawbacks relevant to CPU load, RAM capacity and information measure. The proposed VM consolidation Algorithm (PVMCA) is contained of four algorithms: over loaded host detection algorithm, VM selection algorithm, VM placement algorithm, and under loading host detection algorithm. PVMCA is dynamic because it uses dynamic thresholds instead of static thresholds values, which makes it suggestion for real, unpredictable workloads common in cloud data centers. Also, the Algorithms are adaptive because it inevitably adjusts its behavior based on the studies of historical data of host resource utilization for any application with diverse workload patterns. Finally, the proposed algorithm is online because the algorithms are achieved run time and make an action in response to each request. The proposed algorithms' efficiency was validated through different simulations of extensive nature. The output analysis depicts the projected algorithms scaled back the energy consumption up to some considerable level besides ensuring proper SLA. On the basis of the project algorithms, the energy consumption got reduced by 22% while there was an improvement observed in SLA up to 80% compared to other benchmark algorithms.

Seismic damage assessment of a large concrete gravity dam

  • Lounis Guechari;Abdelghani Seghir;Ouassila Kada;Abdelhamid Becheur
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • In the present work, a new global damage index is proposed for the seismic performance and failure analysis of concrete gravity dams. Unlike the existing indices of concrete structures, this index doesn't need scaling with an ultimate or an upper value. For this purpose, the Beni-Haroun dam in north-eastern Algeria, is considered as a case study, for which an average seismic capacity curve is first evaluated by performing several incremental dynamic analyses. The seismic performance point of the dam is then determined using the N2 method, considering multiple modes and taking into account the stiffness degradation. The seismic demand is obtained from the design spectrum of the Algerian seismic regulations. A series of recorded and artificial accelerograms are used as dynamic loads to evaluate the nonlinear responses of the dam. The nonlinear behaviour of the concrete mass is modelled by using continuum damage mechanics, where material damage is represented by a scalar field damage variable. This modelling, which is suitable for cyclic loading, uses only a single damage parameter to describe the stiffness degradation of the concrete. The hydrodynamic and the sediment pressures are included in the analyses. The obtained results show that the proposed damage index faithfully describes the successive brittle failures of the dam which increase with increasing applied ground accelerations. It is found that minor damage can occur for ground accelerations less than 0.3 g, and complete failure can be caused by accelerations greater than 0.45 g.

Advances of Self-incompatibility Genetics in Genus Fagopyrum

  • Woo Sun-Hee;Soo-Jeong Kwon;Sung-Hyun Yun;Min-Young Park;Probir Kumar Mittra;Swapan Kumar Roy;Seong-Woo Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.191-191
    • /
    • 2022
  • Heterostyly continues to fascinate evolutionary biologists interested in heredity, evolution, breeding, and adaptive function. Polymorphism demonstrates how simply inherited developmental changes in the location of plant sexual associations can have important consequences for population pollination and mating biology. In contrast to homozygous self incompatibility, only a small number of mating phenotypes can be maintained in the population because insect pollinators have limitations in achieving multiple segregation sites for pollen deposition. Field studies of pollen tube growth have shown that reciprocal style-stamen polymorphisms function to increase the capacity of insect-mediated cross-pollination. The genetic pattern of style morphs is well established in various taxa, but despite recent advances, the identity, number, and structure of the genes controlling the heteromorphic syndrome have been poorly elucidated. The phenomenon of heterostyly in buckwheat has been controlled by gene complex concentrate to S-locus. Homomorphic autogamous buckwheat strains were established by the interspecific hybridization. Backcrossing of this line to the common buckwheat (pin) and selecting homostylar progenies made it possible to introduce the self-compatible gene into common buckwheat. In the result, we obtained the BC9F2 generation, and defined the strong linkage between flower type and self-incompatibility by microscopic observation of pollen tube growth. This finding suggests that self-incompatibility character is not controlled by one gene. Moreover, we defined the strong linkage between flower type and self-incompatibility. It strongly supports the S supergene theory. Therefore, we have plan to elucidate the heterostyly self-incompatibility by using molecular genetics, proteome analysis and apply to exploitation of buckwheat improvement. In near future, the expression of heterozygous syndromes in genus Fagopyrum with single isolated heterozygous species may provide clues to early stages of polymorphic assembly and shed light on evolutionary models of heterozygous strains.

  • PDF

Vulnerability Assessment for Public Health to Climate change Using Spatio-temporal Information Based on GIS (GIS기반 시공간정보를 이용한 건강부문의 기후변화 취약성 평가)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Oh, Su-Hyun;Byun, Jung-Yeon
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.13-24
    • /
    • 2012
  • To prevent the damage to human health by climate change, vulnerability assessment should be conducted for establishment of adaptation strategies. In this study, vulnerability assessment was conducted to provide information about vulnerable area for making adaptation policy. vulnerability assessment for human health was divided into three categories; extreme heat, ozone, and epidemic disease. To assess vulnerability, suitable indicators were selected by three criteria; sensitivity, adaptive capacity, and exposure, spatial data of indicators were prepared and processed using GIS technique. As a result, high vulnerability to extreme heat was shown in the low land regions of southern part. And vulnerability to harmful ozone was high in the surrounding area of Dae-gu basin and metropolitan area with a number of automobiles. Vulnerability of malaria and tsutsugamushi disease have a region-specific property. They were high in the vicinity of the Dimilitarized zone and south-western plain, respectively. In general, vulnerability of human health was increased in the future time. Vulnerable area was extended from south to central regions and from plain to low mountainous regions. For assessing vulnerability with high accuracy, it is necessary to prepare more related indicators and consider weight of indicators and use climate prediction data based on the newly released scenario when assessing vulnerability.

A Delay-Bandwidth Normalized Scheduling Model with Service Rate Guarantees (서비스율을 보장하는 지연시간-대역폭 정규화 스케줄링 모델)

  • Lee, Ju-Hyun;Hwang, Ho-Young;Lee, Chang-Gun;Min, Sang-Lyul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.10
    • /
    • pp.529-538
    • /
    • 2007
  • Fair Queueing algorithms based on Generalized Processor Sharing (GPS) not only guarantee sessions with service rate and delay, but also provide sessions with instantaneous fair sharing. This fair sharing distributes server capacity to currently backlogged sessions in proportion to their weights without regard to the amount of service that the sessions received in the past. From a long-term perspective, the instantaneous fair sharing leads to a different quality of service in terms of delay and bandwidth to sessions with the same weight depending on their traffic pattern. To minimize such long-term unfairness, we propose a delay-bandwidth normalization model that defines the concept of value of service (VoS) from the aspect of both delay and bandwidth. A model and a packet-by-packet scheduling algorithm are proposed to realize the VoS concept. Performance comparisons between the proposed algorithm and algorithms based on fair queueing and service curve show that the proposed algorithm provides better long-term fairness among sessions and that is more adaptive to dynamic traffic characteristics without compromising its service rate and delay guarantees.