• Title/Summary/Keyword: acute resistance exercise

Search Result 17, Processing Time 0.023 seconds

Control Mechanism of AMPK and Autophagy for Mitochondrial Biogenesis (AMPK와 자식작용의 미토콘드리아 생합성 조절 기전)

  • Jeon, Byeong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.355-363
    • /
    • 2009
  • Increased oxidative stress by abnormal mitochondrial function can damage cell signal transduction and gene expression, and induce insulin resistance or diabetes. Autophagy, however, improve insulin resistance by clearance of malfunctioning mitochondria. Exercise also recovers the muscle dysfunction and degeneration by activating mitochondrial biogenesis. As it seems that exercise and autophagy might act as an orchestrated network to induce mitochondrial biogenesis, we investigated whether autophagy is involved in AMPK signal pathway stimulated by exercise or AICAR to increase mitochondrial biogenesis. And it showed that PGC-1 and mtTFA, but not autophagy marker LC3 mRNA expression were significantly increased by 6 hr of acute exercise. On the other hand, PGC-1 and mtTFA mRNA expression were upregulated by AICAR treatment to C2C12 myotube. However these genes were not inhibited by LC3 siRNA transfection. These results provide the evidence that autopahgy affects on mitochondrial biogenesis through different signal pathway from AMPK signal transduction.

Exercise Intervention on Blood Glucose Control of Type 2 Diabetes with Obesity : A Systematic Review (비만을 동반한 제 2형 당뇨병환자의 혈당 조절을 위한 운동 중재 : 체계적 문헌고찰)

  • Jung, Su-Ryun;Kim, Wan-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.1
    • /
    • pp.11-26
    • /
    • 2018
  • PURPOSE: The aim of this study was to review the effects of exercise intervention on blood glucose control in obese type 2 diabetic patients. METHODS: The PubMed and KERISS search engines were used and 61 papers that met the key questions were selected. RESULTS: Exercise is an effective intervention for the control of blood glucose in type 2 diabetic patients because it does not impair glucose transport in the skeletal muscle induced by muscle contractions. Insulin resistance, which is characteristic of type 2 diabetes, is caused by decreased insulin sensitivity or insulin responsiveness. Acute exercise improves the glucose metabolism by increasing the insulin-independent signaling pathways and insulin sensitivity in the skeletal muscle, and regular long-term exercise improves the skeletal muscle insulin responsiveness and systemic glucose metabolism by increasing the mitochondrial and GLUT4 protein expression in the skeletal muscle. CONCLUSION: The improvement of the glucose metabolism through exercise shows a dose-response pattern, and if exercise consumes the same number of calories, high intensity exercise will be more effective for the glucose metabolism. On the other hand, it is practically difficult for a patient with obese type 2 diabetes to control their blood glucose with high intensity or long-term exercise. Therefore, it will be necessary to study safe adjuvants (cinnamic acid, lithium) that can produce similar effects to high-intensity and high-volume exercises in low-intensity and low-volume exercises.

Effects of Pinitol Supplementation and Strength Training on Anaerobic Performance and Status of Energy Substrates in Healthy Young Men

  • Lee, Dae-Taek;Lee, Woon-Yong
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.189-195
    • /
    • 2005
  • To assess the effect of pinitol supplementation and strength training for two weeks on the anaerobic capacity during and after exercise, and improvement of glucose metabolism during the recovery period of muscular fatigue with repeated acute bouts of cycling exercise, a total of 24 healthy young men were recruited and randomly and equally divided into three groups; pinitol supplementation group (PSG), placebo group (PLG), and control group (CON). Using a randomized double-blinded design, subjects in PSG were provided pinitol supplement, consumed orally 1.2 g/day, and participated in the resistance exercise program and cycling exercise for two weeks. Subjects in PLG underwent the same protocol as those in PSG but consumed the same amount of placebo. No supplementation and exercise program was given to CON. Before and after the intervention, all subjects were tested for their anaerobic capacities evaluated by Wingate test twice separated by 30 min. During the test, peak anaerobic power (PP), mean anaerobic power, total work, and fatigue index were evaluated During resting and recovery, blood samples were drawn and plasma pinitol, myo-inositol, chiro-inositol, insulin, free fatty acid, glucose, and lactate levels were analyzed After two weeks, PP and relative PP of the second biking were improved from the first biking in PSG only (p<0.05). No changes were found in all other variables of Wingate test in all groups. No statistical differences between groups and pre- and post-intervention were observed in concentrations of pinitol, myo-inositol, and chiro-inositol, but pinitol concentration was higher during recovery compared to the baseline in all groups and testings (p<0.05). Lactate level during recovery was higher than the resting level, but no other blood parameters were significantly changed. In conclusion, two weeks of pinitol supplementation in conjunction with short duration of anaerobic training in healthy young men did not induce any obvious benefits in terms of anaerobic capacity and energy metabolism Individual and/or population susceptibility may be one factor responsible for adopting pinitol supplementation.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

The Effect of Continuous Epidural Block in Lumbago and Sciatica (요통, 좌골 신경통 환자에서의 지속적 경막외 차단의 효과)

  • Kim, Seok-Hong;Lim, Kyung-Im;Sohn, Hang-Soo;Park, Hack-Ju
    • The Korean Journal of Pain
    • /
    • v.8 no.2
    • /
    • pp.279-285
    • /
    • 1995
  • Extradural block is a form of treatment described as early as the beginning of the present centuries. It has since had positive criticism from a number of authors in different countries. Epidural injections of steroids with or without local anesthetic have become an occasional method of conservative treatment in sciatica & lumbago, especially in acute case. We assess the results of continuous epidural block with steroids and local anesthetics in sciatica & lumbago. From July 1994 to June 1995, we treated 46 case of lumbago and sciatica using continuous epidural block with steroids and local anesthetics. After placement of 17-Gauge Tuohy needle in the epidural space by the technique of loss of resistance, 0.25% bupivacaine 5 cc and triamcinolone 40 mg was administered and then epidural catheter was placed and connected to multiday infusor(Paragon) using 1% lidocaine with continuous infusion rate of 1 ml/hour. Usually, the catheter was removed after 1~2 weeks and then treated with the physical therapy. At the time of patient's discharge, 69.5% of all cases showed excellent or good results. Of particular note, 26 of the 46 cases were followed up by telephone. At present, in using Of particular note, 26 of the 46 cases were followed up by telephone. At present, in using continuous epidural block procedure, a relief in symptoms showed in 65.5% of these 26 cases. Continuous epidural block provides shortening of the recovery time from pain, avoidance of long period bed rest and early physical therapy and exercise. Therefore, continuous epidural block is simple and safe in the treatment of lumbago and sciatica, especially in acute phase.

  • PDF

Role of Nitric Oxide and Molsidomine in the Management of Pulmonary Hypertension in Takayasu's Arteritis (타카야수동맥염에 의한 만성 폐고혈압에서 Nitric Oxide가스와 Molsidomine의 치험 3예)

  • Chin, Jae-Yong;Lee, Sung-Soon;Lee, Sang-Soo;Shim, Tae-Sun;Lim, Chae-Man;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Lee, Sang-Do
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.6
    • /
    • pp.964-972
    • /
    • 2000
  • We report three patients with pulmonary hypertension in Takayasu's arteritis, who showed long-term favorable response, clinically and hemodynamically, to the nitric oxide donor, molsidomine. In these patients, the inhaled nitric oxide was effective in reducing pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR) as was shown in the acute vasodilator response test using the invasive hemodynamic monitoring. Molsidomine (single oral dose of 4 mg) was also effective in reducing PAP and PVR in the acute test, but nifedipine was not. With 4 mg of molsidomine three times daily, their dyspnea, exercise capacity and hemodynamic parameters were improved. These favorable responses have lasted during the 1st and 3rd month follow-up in all patients.

  • PDF

Development and Evaluation of a Portable Micro-Current Stimulator for Acute Lateral Epicondylitis (급성 외측 상과염 치료를 위한 휴대용 미세전류자극기 개발 및 효과 검증)

  • Kwon, Hyeok Chan;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.68-74
    • /
    • 2019
  • Lateral epicondylitis is caused by repeated use of the wrist, which causes inflammation and pain in the wrist extensor and tendon of the humerus. Delayed onset muscle soreness (DOMS) caused by repetitive resistance exercise affects the tendons connected in series with the muscle, leading to lateral epicondylitis. Although micro-current stimulation has been suggested as a possible treatment for tendinitis, there are insufficient studies on specific variables such as frequency. In this study, 15 healthy adult males and females developed DOMS in the wrist extensor and tendon in the humerus. The experimental group consisted of a low frequency group applying 20 Hz and a high frequency group applying 100 Hz according to the micro-current frequency. Each subject underwent an experiment for 5 days after DOMS, and the recovery rates were compared by measuring AROM, GPT, MST, PPT, and VAS. As a result, the 20 Hz group showed significant changes in AROM, MST, and VAS compared to the control group on the 4th day, and the recovery rate was also higher than that of the 100 Hz group. On the 5th day, recovery rate of 100 Hz group was higher than 20 Hz in AROM and PPT, and MST showed higher recovery rate than 20 Hz group, but there was no significant difference. These results indicate that microcurrent stimulation is effective for the treatment of delayed myalgia and tendon inflammation and that the 100 Hz group has faster recovery than the 20 Hz group.