• Title/Summary/Keyword: actuation system

Search Result 336, Processing Time 0.023 seconds

AN ESTIMATION OF THE ROLL CONTROL EFFECTIVENESS OF THE ROLL VANES OF A LAUNCH VEHICLE USING CFD AND DESIGN OF AN ACTUATION SYSTEM (CFD에 의한 발사체 롤 베인 제어 효율성 예측 및 구동 시스템 설계)

  • Kim, Young-Hoon;Ok, Ho-Nam;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.87-91
    • /
    • 2005
  • A conceptual design for the movable roll vane system is done for the roll stability control of KSLV-I. The control effectiveness of the roll vanes is estimated using the numerical simulation. The hinge location is selected to minimize the torque requirement at the maximum dynamic pressure condition, and the maximum torque of 3.0 kN-m is found to be required to actuate the roll vanes for the entire range of operation. An electro-mechanical actuator system which is composed of a DC motor, the speed reducers, the battery package and the controller is designed using the given requirements, the maximum torque of 3.0 kN-m, the maximum deflection angle of 25 deg. and the maximum angular velocity of 30 deg/sec. More detailed design to make more compact and highly efficient system will be done in the future.

  • PDF

TVC Actuation Tests and Analyses for Real-Sized Kick Motor Assembly of KSLV-I (KSLV-I 실물형 킥모터조합체 TVC 구동특성시험 및 분석)

  • Sun, Byung-Chan;Park, Yong-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.146-156
    • /
    • 2007
  • In this paper, the TVC actuation test and analysis results for a flexible seal kick motor nozzle are presented. A real-sized test model of KSLV-I kick motor system is applied to water pressurizing TVC tests which investigate the property changes in TVC nozzle expansion and TVC actuation performance against chamber pressure changes. The equipments which are required for TVC actuation tests are briefly explained. The TVC actuation tests are firstly accomplished in static mode, which reveals TVC error characteristics including thrust misalignment, control accuracy, and TVC stroke increase, etc. The properties in frequency domain is given via dynamic tests. These results may play an important role in enhancing the TVC control performance of KSLV-I.

  • PDF

Sliding Mode Control for an Actuation System using BLDC Motor (BLDC 모터 구동 시스템을 위한 슬라이딩 모드 제어)

  • 송치영;김상화;박지호;이상열;신효필
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.179-188
    • /
    • 2001
  • The objective of this paper is to design and implement sliding mode control scheme for an actuation system using BLDC motor. Since the dynamic characteristics of this system with unknown disturbance and parameter variations are very complicated and highly nonlinear, the conventional linear control approaches may not guarantee satisfactory control performances. In order to improve the dynamic performances of this system, a model following sliding mode control(MFSMC) with perturbation estimation approach is designed and implemented. It eliminates the conventional requirements for the knowledge of uncertainty upper boundary. The effectiveness of this control approach is verified by comparison with a PID control through a series of simulation and experimental studies.

  • PDF

Modeling and Development of Human-Muscle Type Humanoid (인체근육 구조 인간형 로봇의 모델링 및 구현)

  • Oh, Ji-Heon;Yi, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.64-72
    • /
    • 2007
  • Many human-body motions such as walking, running, jumping, etc. require a significant amount of power. To achieve a high power-to-weight ratio of the humanoid robot system, this paper proposes a new design of the bio-mimetic leg mechanism resembling musculoskeletal system of the human body. The hip joints of the system considered here are powered by 5 human-like bi-and mono-articular muscles, and the joints of knee and ankle are redundantly actuated by both bi-articular muscles and joint actuators. The kinematics for the leg mechanism is derived and a kinematic index to measure force transmission ratio is introduced. It is demonstrated through simulation that incorporation of redundant muscles into the leg mechanism enhances the power of the mechanism approximately 2 times of the minimum actuation.

Lifetime Evaluation of Digital Engineered Safety Features Actuation System Using Reliability Block Diagram

  • Park, Joo-Hyun;Lee, Dong-Young;Park, Jong-Gyun;Han, Jae-Bok;Jun Lyou
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.387-401
    • /
    • 2002
  • The Digital Engineered Safety Feature Actuation System (DESFAS) of nuclear power plants actuates safety systems to mitigate severe accidents occurred in nuclear power plants. The reliability of the system should be evaluated in order to meet the reliability criteria of nuclear power plants. In this work, we have calculated and evaluated the lifetime of DESFAS by using Reliability Block Diagram (RBD) and failure rates of digital control components. Surveillance test is assumed in the evaluation. The result shows that the digital control component can be used in DESFAS system.

  • PDF

Three-dimensional Locomotion and Drilling Microrobot Using Electromagnetic Actuation System (전자기 구동 시스템을 이용한 마이크로로봇의 3차원 이동 및 드릴링)

  • Li, Jie;Choi, Hyun-Chul;Cha, Kyoung-Rae;Jeong, Se-Mi;Park, Jong-Oh;Park, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1573-1578
    • /
    • 2011
  • In this study, a novel electromagnetic microrobot system with locomotion and drilling functions in threedimensional space was developed. Because of size limitations, the microrobot does not have actuator, battery, and controller. Therefore, an electromagnetic actuation (EMA) system was used to drive the robot. The proposed EMA system consists of three rectangular Helmholtz coil pairs in x-, y- and z-axes and a Maxwell coil pair in the z-axis. The magnetic field generated in the EMA coil system could be controlled by the input current of the EMA coil. Finally, through various experiments, the locomotion and drilling performances of the proposed EMA microrobot system were verified.

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF

A Study on the Drift Effect of Instrument Channel for Nuclear Power Plant (원전 계측 채널 Drift에 관한 연구)

  • Kim, In Hwan;Kim, Hyeong Taek;Kim, Yun Jung
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.96-101
    • /
    • 2014
  • The Instrument Channel setpoints of the Reactor Protection System(RPS) and the Engineered Safety Feature Actuation System(ESFAS) ensures the safety of Nuclear Power Plants (NPPs), and the actuation of the protection system should be guaranteed on power change condition. The goal of this study is to verify the appropriateness of the sensor drift and rack drift which are important factors for setpoints evaluation and to improve the setpoints margin using the operation data, design specifications and operation manuals of the NPPS.

Dynamic Characteristics of an Antagonistic Actuation with Pneumatic Artificial Muscles (공압형 인공근육을 이용한 상극구동의 동적 특성)

  • Kang, Bong-Soo;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1081-1086
    • /
    • 2009
  • This paper presents dynamic characteristics of pneumatic artificial muscles. Since the actuating performance of a pneumatic muscle is closely related to the input pressure of a pneumatic muscle, the air flow model on a valve orifice and an elastic bladder of the muscle is formulated to estimate precisely the pressure variance of pneumatic muscles during deflating and inflating process. Frequency response experiments are performed with an antagonistic system consisting of two pneumatic muscles and fast pneumatic control valves. Comparing with experimental results, the proposed model yielded good performance in estimating dynamic motions of the antagonistic system as well as the pressure variance of the pneumatic artificial muscles

Torque Distribution Control of 3RRR Redundant Parallel Robot (여유구동 3RRR 병렬로봇의 힘분배 제어에 관한 연구)

  • Lee, Sang-Moon;Lee, Jeh-Won;Shim, Ho-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.72-79
    • /
    • 2008
  • In the redundant actuation system which has more actuators than a system's mobility, there are various method to determine actuated torques because those are not determined uniquely. This paper presents a torque distribution method using weighted-pseudoinverse to optimize the maximum torque of various actuated inputs of the redundant system. The various weighting factor of weighted-pseudoinverse is studied to reduce maximum actuated torque. This method is experimentally applied to 3RRR parallel robot, which shows that presented method can efficiently reduce the maximum actuated torque.