• Title/Summary/Keyword: actual error

Search Result 1,381, Processing Time 0.031 seconds

Comparison of the sound source localization methods appropriate for a compact microphone array (소형 마이크로폰 배열에 적용 가능한 음원 위치 추정법 비교)

  • Jung, In-Jee;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • The sound source localization technique has various application fields in the era of internet-of-things, for which the probe size becomes critical. The localization methods using the acoustic intensity vector has an advantage of downsizing the layout of the array owing to a small finite-difference error for the short distance between adjacent microphones. In this paper, the acoustic intensity vector and the Time Difference of Arrival (TDoA) method are compared in the viewpoint of the localization error in the far-field. The comparison is made according to the change of spacing between adjacent microphones of the three-dimensional microphone array arranged in a tetrahedral shape. An additional test is conducted in the reverberant field by varying the reverberation time to verify the effectiveness of the methods applied to the actual environments. For estimating the TDoA, the Generalized Cross Correlation-Phase transform (GCC-PHAT) algorithm is adopted in the computation. It is found that the mean localization error of the acoustic intensimetry is 2.9° and that of the GCC-PHAT is 7.3° for T60 = 0.4 s, while the error increases as 9.9°, 13.0° for T60 = 1.0 s, respectively. The data supports that a compact array employing the acoustic intensimetry can localize of the sound source in the actual environment with the moderate reflection conditions.

A Study on the ACC Safety Evaluation Method Using Dual Cameras (듀얼카메라를 활용한 ACC 안전성 평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.57-69
    • /
    • 2022
  • Recently, as interest in self-driving cars has increased worldwide, research and development on the Advanced Driver Assist System is actively underway. Among them, the purpose of Adaptive Cruise Control (ACC) is to minimize the driver's driving fatigue through the control of the vehicle's longitudinal speed and relative distance. In this study, for the research of the ACC test in the real environment, the real-road test was conducted based on domestic-road test scenario proposed in preceding study, considering ISO 15622 test method. In this case, the distance measurement method using the dual camera was verified by comparing and analyzing the result of using the dual camera and the result of using the measurement equipment. As a result of the comparison, two results could be derived. First, the relative distance after stabilizing the ACC was compared. As a result of the comparison, it was found that the minimum error rate was 0.251% in the first test of scenario 8 and the maximum error rate was 4.202% in the third test of scenario 9. Second, the result of the same time was compared. As a result of the comparison, it was found that the minimum error rate was 0.000% in the second test of scenario 10 and the maximum error rate was 9.945% in the second test of scenario 1. However, the average error rate for all scenarios was within 3%. It was determined that the representative cause of the maximum error occurred in the dual camera installed in the test vehicle. There were problems such as shaking caused by road surface vibration and air resistance during driving, changes in ambient brightness, and the process of focusing the video. Accordingly, it was determined that the result of calculating the distance to the preceding vehicle in the image where the problem occurred was incorrect. In the development stage of ADAS such as ACC, it is judged that only dual cameras can reduce the cost burden according to the above derivation of test results.

Rule of Combination Using Expanded Approximation Algorithm (확장된 근사 알고리즘을 이용한 조합 방법)

  • Moon, Won Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.21-30
    • /
    • 2013
  • Powell-Miller theory is a good method to express or treat incorrect information. But it has limitation that requires too much time to apply to actual situation because computational complexity increases in exponential and functional way. Accordingly, there have been several attempts to reduce computational complexity but side effect followed - certainty factor fell. This study suggested expanded Approximation Algorithm. Expanded Approximation Algorithm is a method to consider both smallest supersets and largest subsets to expand basic space into a space including inverse set and to reduce Approximation error. By using expanded Approximation Algorithm suggested in the study, basic probability assignment function value of subsets was alloted and added to basic probability assignment function value of sets related to the subsets. This made subsets newly created become Approximation more efficiently. As a result, it could be known that certain function value which is based on basic probability assignment function is closely near actual optimal result. And certainty in correctness can be obtained while computational complexity could be reduced. by using Algorithm suggested in the study, exact information necessary for a system can be obtained.

Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Thursby, Michael
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.3
    • /
    • pp.47-56
    • /
    • 2003
  • We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

  • PDF

ANN Sensorless Control of Induction Motor with FLC-FNN Controller (FLC-FNN 제어기에 의한 유도전동기의 ANN 센서리스 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.117-122
    • /
    • 2006
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also this paper is proposed. speed control of induction motor using FLC-FNN and estimation of speed using ANN controller. The back Propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System (소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

Rotor Resistance Estimation of Induction Motor by Artificial Neural-Network (인공신경회로망에 의한 유도전동기의 회전자 저항 추정)

  • Kim, Kil-Bong;Choi, Jung-Sik;Ko, Jae-Sub;Chugn, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.50-52
    • /
    • 2006
  • This paper Proposes a new method of on-line estimation for rotor resistance of the induction motor in the indirect vector controlled drive, using artificial neural network (ANN). The back propagation algorithm is used for training of the neural networks. The error between the desired state variable of an induction motor and actual state variable of a neural network model is back propagated to adjust the weight of a neural network model, so that the actual state variable tracks the desired value. The performance of rotor resistance estimator and torque and flux responses of drive, together with these estimators, are investigated variations rotor resistance from their nominal values. The rotor resistance are estimated analytically, using the proposed ANN in a vector controlled induction motor drive.

  • PDF

A Study on the Robust Controller in Independent Modal space for Parameter Errors (파라메타 오차에 강인한 독립모달공간 제어기법에 대한 연구)

  • 황재혁;김준수;박대성;박명호
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.595-605
    • /
    • 1996
  • If the control force designed on the basis of the mathematical model with parameter errors is applied to control the actual system, the closed-loop performance of the actual system will be degraded depending on the degree of the errors, In this study, the effect of parameter errors on the robustness of several natural controls has been analyzed and compared. Every asymptoic stability condition for the natural controls has been derived using Lyapunov approach, and the characteristics of the stability conditions has also been compared. The extent of deviation of the closed-loop performance from the designed one for the natural controls is derived using operator techniques, and evaluated by numerical method. It has been found that the optimal control, acceleration feedback control, and acceleration-position feedback control among the considered natural controls would be robust one with respect to the parameter errors.

  • PDF

Improved Leakage Signal Blocking Methods for Two Channel Generalized Sidelobe Canceller

  • Kim, Ki-Hyeon;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-128
    • /
    • 2006
  • The two-channel Generalized Sidelobe Canceller (GSC) scheme suffers from the presence of leakage signal in the reference channel. The leakage signal is caused by the dissimilar impulse responses between microphones, and different paths from speech source to microphones. Such leakage is detrimental to speech enhancement of the GSC since the desired reference signal becomes corrupted. In order to suppress the signal leakage, two matrix injection methods are proposed. In the first method, a simple gain compensation matrix is used. In the second, a projection matrix for reducing the error between the actual and the ideal primary and reference signals, is used. This paper describes the performance degradation resulting from leakage, and proposes effective methods to resolve the problem. Representative experiments were conducted to demonstrate the effectiveness of the proposed methods on recorded speech and noise in an actual automobile environment.

  • PDF

Analysis of the Characteristic Lines on Geometrical Texture by Ball end Milling (볼엔드밀 가공면의 기하학적 특징선 해석)

  • Jung, Tae-Sung;Choi, In-Hugh;Yang, Min-Yang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1148-1153
    • /
    • 2003
  • An adequate method for the prediction of machining errors is essential to improve productivity and product quality. But it is known that there is a remarkable difference between values calculated by conventional roughness model and measured values of actual machined surfaces under high efficient cutting condition. This paper introduces the theoretical analysis of characteristic lines of cut remainder to evaluate a geometrical surface roughness accurately. In this study, analytic equations of the characteristic lines are derived from the surface generation mechanism of ball end milling considering the actual trochoidal trajectories of cutting edges. The predicted results are compared with the results of conventional roughness model.

  • PDF