• 제목/요약/키워드: active suspension system

검색결과 261건 처리시간 0.042초

현가시스템용 압력제어밸브에 관한 연구 (A Study on Hydraulic Pressure Reducing Valve for Active Suspension Systems)

  • 김동원;양승현;이석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2528-2530
    • /
    • 2005
  • In this paper, a study on the analysis and design of an electro-hydraulic pressure reducing valve for active suspension system of car is fulfilled. Also, the structurally improved direct-acting electro-hydraulic pressure reducing valve is proposed to satisfy the performance that active suspension system requires. To prove the possibility whether the proposed valve can be used for active suspension system or not, the mathematical modeling and analysis for this valve is fulfilled and the experiment of response to controlled pressure is achieved. Here we conformed the response speed to controlled pressure of the structurally improved valve changed for the better by modifying the shape of spool such as the structure which make use of the power of controlled pressure derived from the area difference between two section areas of valve spool.

  • PDF

노면추정을 통한 반능동 현가시스템의 LQG 제어 (LQC Control for Semi-Active Suspension Systems with Road-Adaptation)

  • 손현철;홍경태;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.669-678
    • /
    • 2003
  • A road-adaptive LQG control for the semi-active Macpherson strut suspension system of hydraulic type is investigated. A new control-oriented model, which incorporates the rotational motion of the unsprung mass, is used for control system design. First, based on the extended least squares estimation algorithm, a LQG controller adapting to the estimated road characteristics is designed. With computer simulations, the performance of the proposed LQC-controlled semi-active suspension is compared with that of a non-adaptive one. The results show better control performance of the proposed system over the compared one.

MR댐퍼를 장착한 SUV의 조향으로 인한 롤 특성 평가 (Roll Characteristics Evaluation due to the Steering of a SUV with MR Dampers)

  • 강인필;백운경
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2009
  • This study is about roll characteristics evaluation to show the advantage of using MR(magneto-rheological) dampers for steering of a SUV(sports utility vehicle). Roll characteristics is very important to observe the roll-propensity of the SUV. ADAMS/Car program was used to simulate the basic steering motion, using 63 D.O.F. vehicle model. Sky-Hook and Ground-Hook control algorithms were used as a semi-active suspension system controller. The roll characteristics from the steering motion were compared between the simulation results from the semi-active suspension system and the passive suspension system.

  • PDF

전차량의 능동 현가 장치 제어를 위한 중복 분산형 견실 고유구조지정 제어기 설계 (Overlapping Decentralized Robust EA Control Design for an Active Suspension System of a Full Car Model)

  • 정용하;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.217-217
    • /
    • 2000
  • A decentralized robust EA(eigensoucture assignment) controller is designed for an active suspension system of a vehicle based on a full car model with 7-degree of freedom. Using overlapping decomposition, the full car model is decentralized by two half car models. For each half car model, a robust eigenstructure assignment controller can be obtained by using optimization approach. The performance of the decentralized robust EA controller is compared with that of a conventional centralized EA controller through computer simulations.

  • PDF

주행 상황을 고려한 차량 능동 현가장치 제어기 설계 (Design of A Controller for Vehicle Active Suspensions Considering Driving Conditions)

  • 천종민;이종무;권순만;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권12호
    • /
    • pp.698-704
    • /
    • 2005
  • Passive suspensions with fixed design constants are very restrictive in the inherent suspension problem, the trade-off between the ride quality and the suspension travel. Active suspensions are used to solve some drawbacks of passive suspensions. In this paper, we propose a controller design for vehicle active suspensions considering variable driving conditions. Our controller estimates the current driving conditions by detecting the road frequencies gotten from Fourier Transform and decides which factor must be emphasized between the ride quality and the suspension travel. In one case of focusing on the ride quality, we use the skyhook control law and in the other case of focusing on the suspension travel, the double skyhook control law is used. The control law modified by various road situations outputs the reference force value the electro-hydraulic actuator in active suspension system must generate. To track the reference force, we adopt the sliding control law which is very useful in controlling the nonlinear system like the electro-hydraulic actuator.

대형 트럭 반능동형 캐빈 공기 현가시스템의 승차감 성능 평가 연구 (Ride Performance Evaluation of a Heavy Truck Semi-active Cabin Air Suspension System)

  • 이지선;최규재;이광헌
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.77-83
    • /
    • 2008
  • Semi-active cabin air suspension system improves driver's comfort by controlling the damping characteristics in accordance with driving situation. For the driver's comfort evaluation, test procedure has the two methodologies which are filed test and lab test. A field test method has a drawback. It requires a lot of time and money on repetitive test, due to the sensitivity of field test. On the other hand, the test with six axes simulation table at laboratory can obtain the repeatability of test, better than the field test method. In this paper, the procedures of ride performance test and control logic tuning with the table are presented. Drive files of the table can be represented with the almost same input condition as field test data. According to the result from the comparative test using six axes simulation table between passive and semi-active system by making ECU logic tuning, the RMS acceleration of semi-active cabin air suspension system was reduced by 29.6% compared with passive system.

유압계의 동특성을 고려한 능동 현가계의 합성 제어 (Hybrid Control of Active Suspension System Considering Hydraulic System Dynamics)

  • 김효준;박혁성;양현석;박영필
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.239-246
    • /
    • 1997
  • This paper presents an active suspension control algorithm to improve the suspension performance trade-offs between riding comfort and handling stability. In this paper, a hybrid control scheme is proposed, the idea of which is that sliding mode control is used for nonlinear hydraulic system and the skyhook control is applied to control the vehicle behavior. The parameter variations in hydraulic system are considered for the robust controller design. The performance of the proposed control method is evaluated by simulation and experiments based on a half car roll model which can reveal both heave and roll behavior.

  • PDF

연속제어방식의 반능동형 전자제어 현가장치의 가변댐퍼 감쇠력 특성 연구 및 차량 운동성능에 미치는 효과 분석 (A study on the variable damping characteristics of the continuous controlled semi-active suspension system and the effect analysis of the vehicles motion performance)

  • 소상균;조경일
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.190-198
    • /
    • 1999
  • Continuously controlled semi-active suspension system may improve ride and handling properties. Here, as a mechanism to control the fluid flow solenoid valve mechanism is introduced and added to the basic passive damper to create damping forces of the shock absorbers. The system may produce continuously controlled damping forces in both solenoid valve only and combination with passive shock absorber including fluid flow is studied, and then the combined model is added to the full vehicle model to evaluate its ride and handling performance. Finally, the simulation results are compared to the vehicle models having similar suspension system.

  • PDF

ER 유체를 이용한 반능동식 가변댐퍼의 성능해석 (Performance Analysis of a Semi-Active Variable Damper Featuring Electro-Rheological Fluids)

  • 최승복;정재천;최용빈;허승진;서문석
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.90-100
    • /
    • 1993
  • This paper presents some inherent characteristics of a semi-active variable damper featuring electro-rheological (ER) fluid. The damping force of the damper can be selectively adjusted or controlled by employing electric field to the ER fluid domain. This is possible owing to the pressure drop across the piston occured by field-dependent variable yield stress of the ER fluid. This is fundamentally different than the performance of a conventional adjustable viscous damper. To demonstrate the effectiveness and superiority over the conventional one, the proposed damper is incorporated with a suspension system. A quarter car model with the suspension system is formulated and represented by a state equation. By choosing numerical values based on realistic package size, power requirements and suitable ER properties, the performance characteristics of the suspension system are obtained and evaluated in both frequency and time domains. The effects of constant electric field and on-off controlled electric field which relates to the damping force are also examined.

  • PDF

$H_{inf}$와 로버스트 적응 제어기를 이용한 능동 현가 시스템의 제어 (Control of Active Suspension System Using $H_{inf}$ And Adaptive Robust Control)

  • 부이 트롱 휴;쿠엔 탄 티엔;박순실;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.694-699
    • /
    • 2001
  • This paper presents a control of active suspension system for quarter-car model with two-degree-of-freedom using $H_{inf}$ and nonlinear adaptive robust control method. Suspension dynamics is linear and treated by $H_{inf}$ method which guarantees the robustness of closed loop system under the presence of uncertainties and minimizes the effect of road disturbance to system. An Adaptive Robust Control (ARC) technique is used to design a force controller such that it is robust against actuator uncertainties. Simulation results are given for both frequency and time domains to verify the effectiveness of the designed controllers.

  • PDF