• Title/Summary/Keyword: active sulfur

Search Result 105, Processing Time 0.031 seconds

Properties of SPE-Based Cement Grout for Semi-Rigid Pavements (Sulfur Polymer Emulsion을 활용한 반강성 포장용 시멘트 주입재의 특성)

  • Lee, Byung-Jae;Lee, Jun;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • The development of the oil refining industry has resulted in an annual 120 million tons of sulphur, which is a by-product of the desulphurization process. To exploit this abundance, the applications of sulphur must be expanded. as excellent durability of reuse of leftover sulphur which has high potential for utilization in construction materials, the study is actively in progress. Meanwhile, there has been active research on semi-rigid pavements that draw on the strengths and overcome the weaknesses of asphalt and concrete pavements. Acrylate is used to prevent cracking but involves a high cost, thus, an alternative material is required. As such, this study presents methods on the reuse of leftover sulphur and examines the engineering performance of grout containing sulfur polymer emulsion (SPE) for use in semi-rigid pavements. Our analysis shows that grout in which 30% of acrylate is replaced with SPE has superior properties in terms of time of flow and strength compared to regular grout. However, performance declined when more than 50% of acrylate was replaced by SPE, indicating that the optimum replacement level is 30%. Through SEM analysis, we found that grout with utra harding cement in this study at three hours had similar hydration properties to that of Type 1 Ordinary Portland Cement (OPC) at seven days, and maintained the properties regardless of grout containing SPE. OPC and grout with a replacement level of 30% displayed similar levels of chloride invasion resistance, whereas grout without SPE was far less resistant. Within the scope of this paper, the optimum replacement level of acrylate with SPE was found to be 30% in consideration of various properties such as time of flow, strength, and chloride invasion resistance.

Suppression of Monosodium Urate-induced NLRP3 Inflammasome Activation by Garlic-derived Sulfur-containing Phytochemicals is Associated with Blocking ROS Generation in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 마늘 유래 황 함유 화합물에 의한 요산 유도 inflammasome 활성화의 억제는 ROS 생성 차단과 연관성이 있음)

  • Min Yeong Kim;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.349-356
    • /
    • 2023
  • Gout, a chronic inflammatory arthritic disease, is characterized by hyperuricemia. Gout can be induced by an inflammatory response to monosodium urate (MSU) crystals mediated by pro-inflammatory cytokine release following activation of the NOD-like receptor protein 3 (NLRP3) inflammasome. Many sulfur-containing phytochemical compounds in garlic (Allium sativum L.) are considered active ingredients because of their potential pharmacological benefits for various diseases, but their efficacy in NLRP3 inflammasome activation-mediated gout has not been demonstrated. In this study, we investigated whether diallyl disulfide (DADS) and diallyl trisulfide (DATS), representative garlic-derived sulfur compounds, have an inhibitory effect on MSU-induced NLRP3 inflammasome activation. Our results showed that under non-cytotoxic conditions, DADS and DATS significantly blocked nitric oxide production and interleukin (IL)-1β release in response to MSU in lipopolysaccharide (LPS)-primed RAW 264.7 macrophages. DADS and DATS also attenuated enhanced expression of NLRP3 and its adapter protein, apoptosis-associated speck-like protein, which was associated with downregulation of and caspase-1 p20 and IL-1β expression, suggesting that MSU-induced LRP3 inflammasome activation was counteracted by DADS and DATS. Furthermore, DADS and DATS blocked oxidative stress, an upstream event for NLRP3 inflammasome activation, as evidenced by the fact that they scavenged reactive oxygen species (ROS) production. Taken together, our findings demonstrate that DADS and DATS suppressed NLRP3 inflammasome activation by inhibiting the ROS/NLRP3 pathway and that they have potential as treatments for NLRP3-dependent gouty arthritis.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.

Design of Chlorine-resistant layer for stable electrode in seawater-based electrochemical devices (해수 기반 전기화학소자의 안정적인 전극을 위한 내염소층 설계)

  • Suyeon Kim;Aye Myint Myat Kyaw;Chaeun Kim;Yewon Jang;Youri Han;Li Oi Lun
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.4
    • /
    • pp.325-330
    • /
    • 2024
  • When seawater is used in electrochemical devices, issues arise such as the adsorption of chloride ions blocking the active sites for Oxygen reduction reactions (ORR) in seawater batteries, and the occurrence of Chlorine evolution reactions (ClER) in seawater electrolysis due to chloride anions (Cl-) competing with OH- for catalytic active sites, potentially slowing down Oxygen evolution reactions (OER). Consequently, the performance of components used in seawater battery and seawater electrolysis may deteriorate. Therefore, conventional alloys are often used by coating or plating methods to minimize corrosion, albeit at the cost of reducing electrical conductivity. This study thus designed a corrosion-resistant layer by doping carbon with Nitrogen (N) and Sulfur (S) to maintain electrical conductivity while preventing corrosion. Optimal N,S doping ratios were developed, with corrosion experiments confirming that N,S (10:90) carbon exhibited the best corrosion resistance performance.

Purification, Characterization, and Cloning of Trimethylamine Dehydrogenase from Methylophaga sp. Strain SK1

  • Kim, Hee-Gon;Kim, Yan;Lim, Heon-Man;Shin, Hyun-Jae;Kim, Si-Wouk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.337-343
    • /
    • 2006
  • Trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde, was purified from Methylophaga sp. strain SK1. The active TMADH was purified 12.3-fold through three purification steps. The optimal pH and temperature for enzyme activity was determined to be 8.5 and $55^{\circ}C$, respectively. The $V_{max}\;and\;K_m$ values were 7.9 nmol/min/mg protein and 1.5 mM. A genomic DNA of 2,983 bp from Methylophaga sp. strain SK1 was cloned, and DNA sequencing revealed the open reading frame (ORF) of the gene coding for TMADH. The ORF contained 728 amino acids with extensive identity (82%) to that of Methylophilus methylotrophus $W_3A_1$.

Characteristics of Exhaust Emission Reduction of Heavy Duty Diesel Engine by Oxidation Catalyst - Reactor Test - (산화촉매에 의한 대형디젤엔진의 배출가스 정화 특성 - Reactor 실험을 중심으로 -)

  • Jo, Gang-Rae;Kim, Yong-U;Kim, Hui-Gang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.313-320
    • /
    • 1998
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidibing CO and HC effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing CO and HC and also to have high activity for the oxidation of sulfur dioxide (SO2) to sulfor trioxide (SO3). There is a need to develop a highly selective catalyst which can promote the oxidation of CO and HC efficiently, but, on the other hand, suppress the oxidation of SO2. One approach to solve this problem is to load a base metal such as vanadium in Pt-based catalyst to suppress sulfate formation. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated catalyst in a laboratory reactor by changing the formulations and reaction temperatures.

  • PDF

Biological Functions of Organosulfur Compounds in Allium Vegetables (Allium속 식물 유래 함유황 유기화합물의 생리적 유용성)

  • 전향숙;김현정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1412-1423
    • /
    • 1999
  • This review contains a discussion of the physiological activity of the components of Allium vegetables. Organosulfur compounds in Allium vegetables, such as ajoene, diallyl sulfides and S allylcysteine, have cancer preventive activity in chemically induced animal cancer models. They also have inhibitory effects on proliferation of cancer cells in vitro. Allium vegetables have lipid and cholesterol lowering effect, and platelet aggregation inhibitory activity that help the prevention of cardiovascular diseases. Sulfur con taining compounds, especially allicin and ajoene, have antimicrobial activities against gram negative, positive bacteria and fungi. Moreover, Allium organosulfur compounds such as S allylcysteine showed reducing effects on the senescence related symptoms including cognition. Allium organosulfur compounds have significant importance in food industry as both biologically active ingredients and savory.

  • PDF

Studies on the Polymeric Surface Active Agent (I);Synthesis of Sodium ${\alpha}-Sulfo$ Fatty Acid Vinyl Ester Oligomers (고분자(高分子) 계면활성제(界面活性劑)에 관(關)한 연구(硏究)(제(第) 1 보(報));나트륨 알파 술폰 지방산(脂肪酸) 비닐에스테르 올리머고류(類)의 합성(合成))

  • Jeong, No-Hee;No, Sueng-Ho;Nam, Ki-Dae;So, Boo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 1989
  • Four fatty acid vinyl esters were synthesized by transesterification between vinyl acetate and lauric acid, myristic acid, palmitic acid, stearic acid, respectively. Fatty acid vinyl ester oligomers were prepared from polymerization of four fatty acid vinyl esters in the presence of potassium persulfate in methanol. The ${\alpha}-sulfonation$ of these four fatty acid vinyl ester oligomer were carried by direct addition of sulfur trioxide. Especially, molecular weights of sodium ${\alpha}-sulfo$ fatty acid vinyl ester oligomers were measured by boiling point method.

Partition Property of 5-Nitrothuopyrimidine Nucleoside

  • 이봉훈;신정희;임미경;장태식;박장수;김광호;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.734-736
    • /
    • 1997
  • 5-Nitrouracil and 5-nitrouridine derivatives which C-2 and C-4 oxo-groups of the pyrimidine base were replaced by thio groups were synthesized. The lipophilicities of thiopyrimidine bases were enhanced significantly as indicated by P-values. Oxygen-sulfur exchange leading to 2-thiouracil (2) and 2,4-dithiouracil (3) were associated with 1.4- and 2.6-fold increase in P-value relative to that of uracil (1). The P-values of 5-nitro-2-thiouracil (5) and 5-nitro-2,4-dithiouracil (6) were increased 13.2- and 79.8-fold relative to that of 5-nitrouracil (4). Most of the 5-nitrothiopyrimidine bases and their nucleosides were found to be moderately active against Staphylococcus aureus and Escherichia coli except 5-nitrouracil (4).

Ni/ZnO-based Adsorbents Supported on Al2O3, SiO2, TiO2, ZrO2: A Comparison for Desulfurization of Model Gasoline by Reactive Adsorption

  • Meng, Xuan;Huang, Huan;Weng, Huixin;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3213-3217
    • /
    • 2012
  • Reactive adsorption desulfurization (RADS) experiments were conducted over a series of commercial metal oxide supports ($Al_2O_{3-}$, $SiO_{2-}$, $TiO_{2-}$ and $ZrO_{2-}$) supported Ni/ZnO adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and Fourier transform infrared spectroscopy (FTIR) in order to find out the influence of specific types of surface chemistry and structural characteristics on the sulfur adsorptive capacity. The desulfurization performance of all the studied adsorbents decreased in the following order: Ni/ZnO-$TiO_2$ > Ni/ZnO-$ZrO_2$ > Ni/ZnO-$SiO_2$ > Ni/ZnO-$Al_2O_3$. Ni/ZnO-$TiO_2$ shows the best performance and the three hour sulfur capacity can achieve 12.34 mg S/g adsorbent with a WHSV of $4h^{-1}$. Various characterization techniques suggest that weak interaction between active component and support component, high dispersion of NiO and ZnO, high reducibility and large total Lewis acidity of the adsorbents are important factors in achieving better RADS performance.