• 제목/요약/키워드: active sensor

검색결과 912건 처리시간 0.026초

PZT Actuator를 이용한 외팔보의 능동진동제어 (Active Vibration Control of Cantilever Beams Using PZT Actuators)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1293-1300
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

Micropower energy harvesting using high-efficiency indoor organic photovoltaics for self-powered sensor systems

  • Biswas, Swarup;Lee, Yongju;Kim, Hyeok
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.364-368
    • /
    • 2021
  • We developed a highly efficient organic photovoltaic (OPV) cell with a poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]:[6,6]-phenyl-C71-butyric acid methyl ester active layer for harvesting lower-intensity indoor light energy to power various self-powered sensor systems that require power in the microwatt range. In order to achieve higher power conversion efficiency (PCE), we first optimized the thickness of the active layer of the OPV cell through optical simulations. Next, we fabricated an OPV cell with optimized active layer thickness. The device exhibited a PCE of 12.23%, open circuit voltage of 0.66 V, short-circuit current density of 97.7 ㎂/cm2, and fill factor of 60.53%. Furthermore, the device showed a maximum power density of 45 ㎼/cm2, which is suitable for powering a low-power (microwatt range) sensor system.

Active Stick Control using Frictional Torque Compensation

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.90.6-90
    • /
    • 2002
  • An active stick which has the variable force-feel characteristics is developed. A combined position and force control strategy is mechanized using a 2-axis built-in force sensor and LVDT. The 2-axis force sensor which measures the stick force felt by the operator is developed by using strain gages and appropriate instrumental amplifiers. A mathematical model of the active stick dynamics is derived, and compared with the experimental results. The frictional torque of the stick due to the mechanical contacts of several parts makes the experimental frequency responses to be dependent on the magnitude of excitation signal, and the precision closed loop control to be difficult. A friction observe...

  • PDF

스마트 능동 레이어 센서 개발 (II): 저작 및 적용 연구 (Development of Smart Active Layer Sensor (II): Manufacturing and Application)

  • 이영섭;이상일;권재화;윤동진
    • 비파괴검사학회지
    • /
    • 제24권5호
    • /
    • pp.476-486
    • /
    • 2004
  • 본 논문은 두 편으로 구성된 스마트능동레이어 (smart active layer, SAL) 센서 개발에 관한 두 번째 것이다. 이미 첫 번째 논문에서 언급되었지만, 구조물 건전성 감시 (structural health monitoring, SHM)는 구조물 안전 감시의 비용과 편리성을 개선하기 위한 방법으로서, 산업현장에서 그 응용이 점차 증가하는 새로운 기술이며, 최근 실제 응용을 하기 위한 스마트 센서의 개발 및 연구가 매우 활발하다. 본 논문에서는 첫 번째 논문에 기술된 SAL 센서의 이론 및 개념 연구에 이어서 실제 제작 및 적용연구에 관해 기술한다. 본 연구에서는 탄성파 감지를 위한 스마트 압전 센서 SAL을 개발하였는데, 압전 소자, 전자기파 차폐층 (EMI shielding lave.) 및 보호 층(protection layer)으로 구성되었다. 보호층에 일정 간격으로 분포된 압전 센서가 부착되고, 이들을 전기적으로 연결하는 회로층이 위치하고 있다. 모두 4종류의 SAL 센서가 설계, 제작 및 시험되었으며 이에 대해 상세히 기술하고 있다. 본 연구를 통해 SAL 센서는 SHM의 수행과 탄성파에 의한 손상 위치를 표정하는데 적용 가능할 것으로 예상된다.

Wide Dynamic Range CMOS Image Sensor with Adjustable Sensitivity Using Cascode MOSFET and Inverter

  • Seong, Donghyun;Choi, Byoung-Soo;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.160-164
    • /
    • 2018
  • In this paper, a wide dynamic range complementary metal-oxide-semiconductor (CMOS) image sensor with the adjustable sensitivity by using cascode metal-oxide-semiconductor field-effect transistor (MOSFET) and inverter is proposed. The characteristics of the CMOS image sensor were analyzed through experimental results. The proposed active pixel sensor consists of eight transistors operated under various light intensity conditions. The cascode MOSFET is operated as the constant current source. The current generated from the cascode MOSFET varies with the light intensity. The proposed CMOS image sensor has wide dynamic range under the high illumination owing to logarithmic response to the light intensity. In the proposed active pixel sensor, a CMOS inverter is added. The role of the CMOS inverter is to determine either the conventional mode or the wide dynamic range mode. The cascode MOSFET let the current flow the current if the CMOS inverter is turned on. The number of pixels is $140(H){\times}180(V)$ and the CMOS image sensor architecture is composed of a pixel array, multiplexer (MUX), shift registers, and biasing circuits. The sensor was fabricated using $0.35{\mu}m$ 2-poly 4-metal CMOS standard process.

Linear-logarithmic Active Pixel Sensor with Photogate for Wide Dynamic Range CMOS Image Sensor

  • Bae, Myunghan;Jo, Sung-Hyun;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.79-82
    • /
    • 2015
  • This paper proposes a novel complementary metal oxide semiconductor (CMOS) active pixel sensor (APS) and presents its performance characteristics. The proposed APS exhibits a linear-logarithmic response, which is simulated using a standard $0.35-{\mu}m$ CMOS process. To maintain high sensitivity and improve the dynamic range (DR) of the proposed APS at low and high-intensity light, respectively, two additional nMOSFETs are integrated into the structure of the proposed APS, along with a photogate. The applied photogate voltage reduces the sensitivity of the proposed APS in the linear response regime. Thus, the conversion gain of the proposed APS changes from high to low owing to the addition of the capacitance of the photogate to that of the sensing node. Under high-intensity light, the integrated MOSFETs serve as voltage-light dependent active loads and are responsible for logarithmic compression. The DR of the proposed APS can be improved on the basis of the logarithmic response. Furthermore, the reference voltages enable the tuning of the sensitivity of the photodetector, as well as the DR of the APS.

능동안테나의 발진주파수 편이에 의한 소형 거리 센서 (Compact Range Detection Sensor by Oscillation Frequency Deviation of an Active Antenna)

  • 윤기호
    • 한국정보통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.528-535
    • /
    • 2011
  • 본 논문에서는 고주파 발진회로의 공진기가 안테나로 동작하는 2.4GHz 대역의 능동 안테나를 이용하여 이동체의 거리를 측정할 수 있는 소형 도플러 센서를 제안하였다. 이동체의 움직임에 비례하여 고주파 발진주파수의 편이를 발생시키며 이를 검출하는 회로를 통해 제안된 구조의 동작을 확인하였다. 설계 제작된 거리 감지 센서는 직경이 30mm, 높이 4.2mm 정도로 매우 작은 원형디스크 형태를 갖으며, 안테나는 2.35GHz에서 약 120도의 빔폭과 전방향 방사특성을 나타내었다. 센서의 감도 측정결과, 1m 떨어져 움직이고 있는 도체판에 대해 약 240mV의 도플러 신호 전압을 얻었고, 자유낙하 실험으로부터 지표위의 5m 지점에서부터 지표면까지 선형적인 전압크기의 증가를 보였다.

동적 센서네트워크에서의 유동적 경계선 추종 제어 (Dynamic Boundary Tracking Control in Active Sensor Network)

  • 장세용;이기룡;송봉섭;좌동경;홍석교
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1628-1635
    • /
    • 2008
  • In this paper, the motion coordination algorithm of mobile agents in active sensor network is proposed to track the dynamic boundary for environmental monitoring. While most of dynamic boundary tracking algorithms in the literature were studied under the assumption that the boundary and/or its evolving rate is known a priori, the proposed algorithm is assumed that the individual active agent can measure the state of environment locally without any information of the boundary. When the boundary is evolving dynamically, the formation of active agents is designed to achieve two objectives. One is to track boundary layer based on the measured information and a small deviation. The other is to maintain a uniform distance between adjacent agents. The algorithm structure based on a state diagram is proposed to achieve these two objectives. Finally, it will be shown in the simulations that all given agents converge to a desired boundary layer and maintain a formation along the boundary. (e.g., a circle, an ellipse, a triangle and a rectangle)

Highly Sensitive and Transparent Pressure Sensor Using Double Layer Graphene Transferred onto Flexible Substrate

  • Chun, Sungwoo;Kim, Youngjun;Jin, Hyungki;Jung, Hyojin;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.2-229.2
    • /
    • 2014
  • Graphene, an allotrope of carbon, is a two-dimensional material having a unique electro-mechanical property that shows significant change of the electrical conductance under the applied strain. In addition of the extraordinary mechanical strength [1], graphene becomes a prospective candidate for pressure sensor technology [2]. However, very few investigations have been carried out to demonstrate characteristics of graphene sensor as a device form. In this study, we demonstrate a pressure sensor using graphene double layer as an active channel to generate electrical signal as the response of the applied vertical pressure. For formation of the active channel in the pressure sensor, two single graphene layers which are grown on Cu foil (25 um thickness) by the plasma enhanced chemical vapor deposition (PECVD) are sequentially transformed to the poly-di-methyl-siloxane (PDMS) substrate. Dry and wet transfer methods are individually employed for formation of the double layer graphene. This sensor geometry results a switching characteristic which shows ~900% conductivity change in response to the application of pulsed pressure of 5 kPa whose on and off duration is 3 sec. Additionally, the functional reliability of the sensor confirms consistent behavior with a 200-cycle test.

  • PDF

A SHIPBOARD MULTISENSOR SOLUTION FOR THE DETECTON OF FAST MOVING SMALL SURFACE OBJECTS

  • Ko, Hanseok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.174-177
    • /
    • 1995
  • Detecting a small threat object either fast moving or floating on shallow water presents a formidable challenge to shipboard sensor systems, which must determine whether or not to launch defensive weapons in a timely manner. An integrated multisensor concept is envisioned wherein the combined use of active and passive sensor is employed for the detection of short duration targets in dense ocean surface clutter to maximize detection range. The objective is to develop multisensor integration techniques that operate on detection data prior to track formation while simultaneously fusing contacts to tracks. In the system concept, detections from a low grazing angle search radar render designations to a sensor-search infrared sensor for target classification which in turn designates an active electro-optical sensor for sector search and target verification.

  • PDF