• Title/Summary/Keyword: active rays

Search Result 73, Processing Time 0.029 seconds

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

Application of Nanotechnology in Food Packaging

  • Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • Nanocomposite has been considered as an emerging technology in developing a novel food packaging materials. Polymer nanocomposites exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased barrier properties pertaining to gases such as oxygen, carbon dioxide, and water vapor, as well as to UV rays, and increased mechanical properties such as strength, stiffness, dimensional stability, and heat resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. New packaging materials created with this technology demonstrate an increased shelf life with maintaining high quality of the product. Nanotechnology offers big benefits for packaging. Nanocomposite technology paves the way for packaging innovation in the flexible and rigid packaging applications, offering enhanced properties such as greater barrier protection, increased shelf life and lighter-weight materials.

  • PDF

Motion-Estimated Active Rays-Based Fast Moving Object Tracking (움직임 추정 능동 방사선 기반 고속 객체 추적)

  • Ra Jeong-Jung;Seo Kyung-Seok;Choi Hung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.15-22
    • /
    • 2005
  • This paper proposed a object tracking algorithm which can track contour of fast moving object through motion estimation. Since the proposed tracking algorithm is based on the radial representation, the motion estimation of object can be accomplished at the center of object with the low computation complexity. The motion estimation of object makes it possible to track object which move fast more than distance from center point to contour point for each frame. In addition, by introducing both gradient image and difference image into energy functions in the process of energy convergence, object tracking is more robust to the complex background. The results of experiment show that the proposed algorithm can track fast moving object in real-time and is robust under the complex background.

STRONG INFLUENCE OF THE GALACTIC MAGNETIC FIELD ON THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS

  • KIM, JIHYUN;KIM, HANG BAE;RYU, DONGSU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.549-552
    • /
    • 2015
  • The galactic magnetic field (GMF) and the intergalactic magnetic field (IGMF) affect the propagation of ultra-high energy cosmic rays (UHECRs) from the source to us. Here we examine the influences of the GMF/IGFM and the dependence of their sky distribution on galactic latitude, b. We analyze the correlation between the arrival direction (AD) of UHECRs observed by the Pierre Auger Observatory and the large-scale structure of the universe in regions of sky divided by b. Specifically, we compare the AD distribution of observed UHECRs to that of mock UHECRs generated from a source model constructed with active galactic nuclei. Our source model has the smearing angle as a free parameter that reflects the deflection angle of UHECRs from the source. The results show that larger smearing angles are required for the observed distribution of UHECRs in lower galactic latitude regions. We obtain, for instance, a $1{\sigma}$ credible interval for smearing angle of $0^{\circ}{\leq}{\theta}_s{\leq}72^{\circ}$ at high galactic latitudes, $60^{\circ}$ < $\left|{b}\right|{\leq}90^{\circ}$, and of $75^{\circ}{\leq}{\theta}_s{\leq}180^{\circ}$, $-30^{\circ}{\leq}b{\leq}30^{\circ}$, at low galactic latitudes, respectively. The results show that the influence of the GMF is stronger than that of the IGMF. In addition, we can estimate the strength of GMFs by these values; if we assume that UHECRs would have heavier nuclei, the estimated strengths of GMF are consistent with the observational value of a few ${\mu}G$. More data from the future experiments may make UHECR astronomy possible.

Radiation Dose Measurement and Model Comparison at the Flight Level (비행고도 상에서의 우주방사선 관측 및 모델 비교)

  • Yi, Wonhyeong;Kim, Jiyoung;Jang, Kun-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.91-97
    • /
    • 2018
  • High-energy charged particles are comprised of galactic cosmic rays and solar energetic particles which are mainly originated from the supernova explosion, active galactic nuclei, and the Sun. These primary charged particles which have sufficient energy to penetrate the Earth's magnetic field collide with the Earth's upper atmosphere, that is $N_2$ and $O_2$, and create secondary particles and ionizing radiation. The ionizing radiation can be measured at commercial flight altitude. So it is recommended to manage radiation dose of aircrew as workers under radiation environment to protect their health and safety. However, it is hard to deploy radiation measurement instrument to commercial aircrafts and monitor radiation dose continuously. So the numerical model calculation is performed to assess radiation exposure at flight altitude. In this paper, we present comparison result between measurement data recorded on several flights and estimation data calculated using model and examine the characteristics of the radiation environment in the atmosphere.

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

MASSIVE BLACK HOLE EVOLUTION IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

  • FLETCHER ANDRE B.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.177-187
    • /
    • 2003
  • Active galactic nuclei (AGNs) are distant, powerful sources of radiation over the entire electromagnetic spectrum, from radio waves to gamma-rays. There is much evidence that they are driven by gravitational accretion of stars, dust, and gas, onto central massive black holes (MBHs) imprisoning anywhere from $\~$1 to $\~$10,000 million solar masses; such objects may naturally form in the centers of galaxies during their normal dynamical evolution. A small fraction of AGNs, of the radio-loud type (RLAGNs), are somehow able to generate powerful synchrotron-emitting structures (cores, jets, lobes) with sizes ranging from pc to Mpc. A brief summary of AGN observations and theories is given, with an emphasis on RLAGNs. Preliminary results from the imaging of 10000 extragalactic radio sources observed in the MITVLA snapshot survey, and from a new analytic theory of the time-variable power output from Kerr black hole magnetospheres, are presented. To better understand the complex physical processes within the central engines of AGNs, it is important to confront the observations with theories, from the viewpoint of analyzing the time-variable behaviours of AGNs - which have been recorded over both 'short' human ($10^0-10^9\;s$) and 'long' cosmic ($10^{13} - 10^{17}\;s$) timescales. Some key ingredients of a basic mathematical formalism are outlined, which may help in building detailed Monte-Carlo models of evolving AGN populations; such numerical calculations should be potentially important tools for useful interpretation of the large amounts of statistical data now publicly available for both AGNs and RLAGNs.

CONSTRAINING THE MAGNETIC FIELD IN THE ACCRETION FLOW OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

  • QIAO, ERLIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.457-459
    • /
    • 2015
  • Observations show that the accretion flows in low-luminosity active galactic nuclei (LLAGNs) probably have a two-component structure with an inner hot, optically thin, advection dominated accretion flow (ADAF) and an outer truncated cool, optically thick accretion disk. As shown by Taam et al. (2012), within the framework of the disk evaporation model, the truncation radius as a function of mass accretion rate is strongly affected by including the magnetic field. We define the parameter ${\beta}$ as $p_m=B^2/8{\pi}=(1-{\beta})p_{tot}$, (where $p_{tot}=p_{gas}+p_m$, $p_{gas}$ is gas pressure and $p_m$ is magnetic pressure) to describe the strength of the magnetic field in accretion flows. It is found that an increase of the magnetic field (decreasing the value of ${\beta}$) results in a smaller truncation radius for the accretion disk. We calculate the emergent spectrum of an inner ADAF + an outer truncated accretion disk around a supermassive black hole by considering the effects of the magnetic field on the truncation radius of the accretion disk. By comparing with observations, we found that a weaker magnetic field (corresponding to a bigger value of ${\beta}$) is required to match the observed correlation between $L_{2-10keV}/L_{Edd}$ and the bolometric correction $k_{2-10keV}$, which is consistent with the physics of the accretion flow with a low mass accretion rate around a black hole.

Development of a DDA+PGA-combined non-destructive active interrogation system in "Active-N"

  • Kazuyoshi Furutaka;Akira Ohzu;Yosuke Toh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4002-4018
    • /
    • 2023
  • An integrated neutron interrogation system has been developed for non-destructive assay of highly-radioactive special nuclear materials, to accumulate knowledge of the method through developing and using it. The system combines a differential die-away (DDA) measurement system for the quantification of nuclear materials and a prompt gamma-ray analysis (PGA) system for the detection of neutron poisons which disturb the DDA measurements; a common D-T neutron generator is used. A special care has been taken for the selection of materials to reduce the background gamma rays produced by the interrogation neutrons. A series of measurements were performed to test the basic performance of the system. The results show that the DDA system can quantify plutonium of as small as 20 mg and it is not affected by intense neutron background up to 1.57 × 107 s-1 and gamma ray of 4.43 × 1010 s-1. The gamma-ray background counting rate at the PGA detector was reduced down to 3.9 × 103 s-1 even with the use of the D-T neutron generator. The test measurements show that the PGA system is capable of detecting 0.783 g of boron and about 86.8 g of gadolinium in 30 min.

Evaluation of Senescence Induced Prematurely by Stress. Application for cosmetic active ingredients

  • Morvan, Pierre-Yves;Romuald Vallee
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.285-290
    • /
    • 2003
  • Living cells are continuously subject to all sorts of stress such as ultraviolet rays on skin cells. Tests made in various laboratories show that when young fibroblasts (Le. at the beginning of their proliferate life) were repeatedly put under stress at subletal doses, they acquired a phenotype similar to Senescence Induced Prematurely by Stress (SIPS). The work presented hereafter was made on a new model of senescence induced prematurely by stress from ultraviolet Brays (UVB). The human fibroblast model was put under repeated UVB stress, causing SIPS. Several ageing biomarkers were used in order to characterise the cells that underwent stress:. an increase in the proportion of positive cells with senescence associated $\beta$-galactosidase activity (SA $\beta$-gal) measured by a specific coloration,. the proportion in the different morphological stages that fibroblasts undergo during culture visualised by microscopic observation,. the expression of genes known for overexpressing during senescence, particularly fibronectin and apolipoprotein J, measured by Real Time-PCR,. the common deletion of 4,977 bp in mitochondrial DNA, evaluated by nested PCR. Studying the variation of these 4 biomarkers, we have evaluated the protective effect of a Laminaria digitata extract (LDE) that can be used as a natural active ingredient for anti-ageing cosmetics.

  • PDF