• Title/Summary/Keyword: active inverter

Search Result 467, Processing Time 0.022 seconds

A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems (단상 계통연계 인버터의 SRF 전력제어 방법)

  • Park, Han-Eol;Kim, Eun-Seok;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • It is well known that distributed generation(DG) system using renewable energy is an alternative to solve the problems which result from the exhaustion of fossil fuel and the environmental pollution. A PWM inverter is required for a power flow control in the DG systems. This paper proposes a SRF power flow control method considering grid impedance in grid-connected single-phase inverter systems. The proposed SRF power flow control method can provide a voltage-reference for the single-phase inverter even without any grid impedance estimation so that the single-phase inverter system could operate in stand-alone mode and grid-connected mode based on the known nominal value of grid impedance. Also independent controls of active and reactive power are achieved by the proposed control method. The effectiveness and the validity of the proposed control method are demonstrated through simulations. The simulation results show that the proposed control method can control properly power flow in grid-connected single-phase inverter systems.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Topologies of Active-Switched Quasi-Z-source Inverters with High-Boost Capability

  • Ho, Anh-Vu;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1716-1724
    • /
    • 2016
  • This paper proposes both an active-switched quasi-Z-source inverter (AS-qZSI) and an extended active-switched qZSI (EAS-qZSI), which are based on the classic qZSI. The proposed AS-qZSI adds only one active switch and one diode to the classic qZSI for increasing the voltage boost capability. Compared with other topologies based on the switched-inductor/capacitor qZSI, the proposed AS-qZSI requires fewer passive components in the impedance network under the same boost capability. Additionally, the proposed EAS-qZSI is designed by adding one inductor and three diodes to the AS-qZSI, which offers enhanced boost capability and lower voltage stress across the switches. The performances of the two proposed topologies are verified by simulation and experimental results obtained from a prototype with a 32-bit DSP built in a laboratory.

Design Optimization for High Power Inverters

  • Schroder D.;Kuhn H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.713-717
    • /
    • 2001
  • This paper focuses on a network model for GCTs which can be used to investigate high power circuits with or without using RC-snubbers. The series connection of GCTs is commonly applied in the high power inverter field. Here expensive and space-consuming snubbers are applied, to overcome the problem of an asymmetric distribution of the blocking voltage among the single GCTs. As an alternative to large snubbers, a new active gate drive concept is proposed and investigated by simulation.

  • PDF

A Square Wave Current Compensation of Current Source Induction Motor drives Using Active Power Filter (능동 전력 필터에 의한 유도모터 구동 전류형 인버터의 구형파 전류보상)

  • 정영국
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.133-136
    • /
    • 2000
  • Current Source Inverter(CSI) operated in square wave mode is more efficient than the PWM CSI because of increased cost greater complexity of control algorithm, and substantial switching losses EMI. But the square wave output current of CSI rich in low order harmonics produce motor torque ripples. Therefore in this paper describes the active power filters for square wave current compensation of current source induction motor. Also extended current synchronous detection(ECSD) as compensation algorithm is proposed. To confirm the validity o proposed system some simulation results are presented and discussed.

  • PDF

Current - Fed Active AC Power Filter (전류형 능동 교류 전력필터)

  • Park, Min-Ho;Choe, Gyu-Ha;Lee, Keun-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.409-413
    • /
    • 1988
  • In this paper a control technique for active power filters is proposed which not only eliminates the harmonic current, but also controls the reactive power at the ac side of PWM inverter-induction motor drive system. Injecting the proposed PWM current enables the harmonic components of orders not greater than the pulse number per half-cycle to be removed completely. It also enables the input power factor to become unity. Theoretical investigations are performed to evaluate the performance of the proposed control technique.

  • PDF

Novel Single-State PWM Technique for Common-Mode Voltage Elimination in Multilevel Inverters

  • Nguyen, Nho-Van;Quach, Hai-Thanh;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.548-558
    • /
    • 2012
  • In this paper, a novel offset-based single-state pulse width modulation (PWM) method for achieving zero common-mode voltage (CMV) and reducing switching losses in multilevel inverters is presented. The specific active switching state of the zero common-mode (ZCM) voltage that approximates the reference voltage can be deduced from the switching state sequence of the reduced CMV phase disposition PWM (CMV PD PWM) method. From the reference leg voltages for the zero common-mode voltage, an N-to-2-level transformation defines a virtual two-level inverter and the corresponding nominal leg voltage references. The commutation process of the reduced CMV PD PWM method in a multilevel inverter and its outputs can be simply followed in a nominal switching time diagram for the virtual inverter. The characteristics of the reduced CMV PD PWM and the single-state PWM for zero common-mode voltage are analyzed in detail in this paper. The theoretical analysis of the proposed PWM method is verified by experimental results.

Bq-ZSI fed Induction Motor Drive System Using Modified Space Vector Modulation (변형 공간벡터 변조 기법이 적용된 Bq-ZSI를 이용한 유도전동기 구동시스템)

  • Han, Sang-Hyup;Kim, Heung-Geun;Cha, Honnyong;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • This study investigates a bidirectional quasi-Z-source inverter (Bq-ZSI) system with bidirectional power transfer capability and a modified space vector modulation scheme for reducing the ripple of the inductor current. By replacing the diode in the impedance network with an active switch, the power flow can be bidirectional. The average inductor current of the Bq-ZSI network is negative in the regenerative braking mode, thereby regenerating the power. In addition, modified space vector modulation scheme is applied to the Bq-ZSI to control shoot-through time effectively. A 5 kW prototype is built and tested to implement the proposed system. Experimental results show that the Bq-ZSI system is capable of regenerative braking of the induction motor and that the modified space vector modulation method is efficient.

An active damping method of a grid-connected PWM Inverter using an instantaneous power theory (순시전력이론을 통한 계통연계 PWM 인버터 시스템의 능동댐핑 기법)

  • Jung, Hea-Gwang;Lee, Kyo-Beum;Kang, Sin-Il;Lee, Hyen-Young;Kwon, Oh-Joeng;Song, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.85-87
    • /
    • 2008
  • The demand of a three phase PWM inverter for the purpose of power control or grid-connecting is increasing. This inverter is connected to a grid through an L-filter or LCL-filter to reduce the harmonics caused by switching. An LCL-filter can reduce the harmonic of a low switching frequency and generate a satisfactory level of grid side current with a relatively low-inductance than an L-filter. But the additional poles caused by the LC part affects a stability problem due to induced resonance of the system. This paper presents a compensation method using a power theory to improve performance, the designed LCL-filter system and to reduce the stability problems caused by resonance. The effectiveness of the proposed algorithm is verified by simulations.

  • PDF

Capacity Modulation of an Inverter Driven Heat Pump with Expansion Devices

  • Lee, Yong-Taek;Kim, Yong-Chan;Park, Youn-Cheol;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.60-68
    • /
    • 2000
  • An experimental study was peformed to investigate characteristics of an inverter driven heat pump system with a variation of compressor frequency and expansion device. The compressor frequency varied from 30Hz to 75Hz, and the performance of the system ap-plying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve (EEV) was measured. The load conditions were altered by varying the temperatures of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test condition was deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimal control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in the inverter heat pump system due to active control of flow area with a change of com-pressor frequency and load conditions.

  • PDF