• Title/Summary/Keyword: active glasses

Search Result 38, Processing Time 0.026 seconds

Fabrication and Characterization of Zr and Hf Containing Vitrified Forms of Radioactive Waste

  • Young Hwan Hwang;Seong-Sik Shin;Sunghoon Hong;Jung-Kwon Son;Cheon-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2024
  • Vitrification, one of the most promising solidification processes for various materials, has been applied to radioactive waste to improve its disposal stability and reduce its volume. Because the thermal decomposition of dry active waste (DAW) significantly reduces its volume, the volume reduction factor of DAW vitrification is high. The KHNP developed the optimal glass composition for the vitrification of DAW. Since vitrification offers a high-volume reduction ratio, it is expected that disposal costs could be greatly reduced by the use of such technology. The DG-2 glass composition was developed to vitrify DAW. During the maintenance of nuclear power plants, metals containing paper, clothes, and wood are generated. ZrO2 and HfO2 are generally considered to be network-formers in borosilicate-based glasses. In this study, a feasibility study of vitrification for DAW that contains metal particulates is conducted to understand the applicability of this process under various conditions. The physicochemical properties are characterized to assess the applicability of candidate glass compositions.

Experimental Study on Interaction of Water Sprayed Curtain on Hot Surface of a Window Glass and its Effects on Glass Surface Temperature in Room Fires (구획화재 시 국부복사열에 노출된 유리면의 수막접촉에 따른 급냉파열특성 관한 실험적 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.124-130
    • /
    • 2003
  • This research focuses on analysis of a interaction fracture of various glasses due to contact of water sprayed curtain on hot glass surface with high temperature produced from convective heat source near glass wall. A large scaled experimental test was done in order to find the range of the glass surface temperature to be able to cause the breakage of the glasses when water droplets reach on the hot surface. This paper shows the allowable temperature of the glass surface for prevention of the cooling down breakage before water curtain droplets contact the surface. Allowable Temperature if $250^{\circ}C$ for the tempered glass but general glass is very relatively low. Therefore if the water curtain spray system was adequately activated by a thermal detector installed below ceiling adjacent glass wall with water curtain nozzle system, all hot glass would not break out by cooling water droplet's contact on the hot surface due to convective heat released by adjacent fire source near the glass wall.

Liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified sol-gel materials (유/무기 졸-겔 재료에 비선형광학 물질의 배향특성에 대한 액정효과)

  • Baek, In-Chan;Seok, Sang-Il;Jin, Moon-Young;Lee, Chang-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.132-132
    • /
    • 2003
  • Second-order nonlinear optical(NLO) materials have been extensively studied for applications in photonic devices, such as frequency doubling and electro-optical(EO) modulation, because of their large optical nonlinearity, excellent processibility, low dielectric constant, and high laser damage thresholds. The poling behaviour of NLO chromophore in organic/inorganic matrixes showed the randomization of poled NLO chromophore in the absence of poling Held. The liquid crystal molecules in a droplet showed a long-range orientational order along a director. Therefore, liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified inorganic sol-gel materials were investigated. Using sol-gel process for the development of NLO material has received increasing attention, Organically modifked inorganic NLO sol-Eel materials are obtained via incorporation of the organic NLO active chromophore into an alkoxysilane based inorganic network. One of the most important thing in this works was that tetraethoxysilane(TEOS) and methyltrimathoxysilane(HTMS) were used as precursor followed by hydrolysis and condensation without using any acidic catalyst during the process. The NLO chromophores in the liquid crystal nanodomains were well mixed with I/O hybrid matrix, deposited on transparent ITO-coated glasses. The poling behaviour of liquid crystal effects of NLO chromophore dispersed in I/O hybrid matrix were investigated by UV-vis spectroscopy. Size distribution and morphology of the NLO chromophores doped in the liquid crystal nanodomains dispersed in I/O hybrid matrix were investigated by SEM.

  • PDF

Radioactive Wastes Vitrification Using Induction Cold Crucible Melter: Characteristics of Vitrified Form (유도 가열식 저온용융로를 이용한 방사성페기물 유리화: 유리 고화체 특성)

  • 김천우;박은정;최종락;지평국;최관식;맹성준;박종길;신상운;송명재
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.576-581
    • /
    • 2002
  • In order to simultaneously vitrify the ton Exchange Resin(IER) and Dry Active Waste(DAW) generated from the Nuclear Power Plants, a vitrification pilot test was conducted using an induction cold crucible melter. The PCT result evaluating the chemical durability of the vitrified from showed that the final glass was more durable than the benchmark glass. Liquidus temperature for the final vitrified form was 1048 K(775$\^{C}$) fur heat treatment experiments. The value of the compressive strength for the vitrified form was ninety times higher than the regulation limit, 34 kg/㎠. The glasses on bottom, middle and top of the CCM were homogeneous with no secondary phase. The precipitation of the magnetic metal phase was able to be avoided by simultaneously fEeding of DAW with IER containing strongly reducing organics. Volume reduction factor of 74 was achieved through the vitrification Pilot test for mixed waste.

Investigation of Lead Isotope Ratios on Lead Artifacts Excavated from Mireuk Temple Site, Iksan (익산 미륵사지 출토 납제품의 납동위원소비 분석 고찰)

  • No, Ji-Hyun;Hirao, Yoshimitsu;Kim, Gyu-Ho;Noh, Gi-Hwan
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.137-147
    • /
    • 2009
  • Mireuk temple site is located in Iksan, on the North Jeolla province in Korea, and confirmed tiles, potteries, metals, glasses and other materials that are remaining between Baekje Kingdom and Joseon period after excavations. It is also detected that production and supply of the materials in this era were started inside the country(domestic) at that time. This is important information for the understanding of the production and circulation systems. In this study, lead isotope ratios of 18 samples includedlead glass, crucibles and glazed rafter tiles excavated from Mireuk Temple Site of Baekje era were analyzed for the provenance study of raw glass material supply and distribution of glass products. The results of lead isotope ratio analysis have shown that all raw materials were located in the distribution area of Baekje region and also confirmed to be accord with the previous research results. As comparing the lead isotope ratios of glass and glass materials excavated from Mireuk Temple Site with Miyajidake tomb from Fukuoka Prefecture in Japan, it is found that the same raw materials were used for glass production. It means that there is the active connection between Mireuk temple site and Miyajidake and that these areas are sharing the same materials at the same period. It also shown that artifacts excavated from Miyajidake were strongly influenced from Baekje culture. And it is estimated that there is a possibility of the use ofsame materials whether the supplies of them are from a specific place of Baekje or not

  • PDF

The grading of cognitive state comparisons with different distances across three conditions in stroke survivors

  • Kim, Yumi;Park, Yuhyung
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Objective: The purpose of this study was to compare with different distance across three conditions in stroke survivors with the grading of cognitive state. Design: Cross-sectional study. Methods: Twelve stroke patients who agreed to active participation were included. Participants were allotted to normal cognitive (CN) group (n=7) and cognitive impairment (CI) group (n=5) and then walked on a self-paced walkway at three conditions on the Time Up and Go (TUG) test and the 6 minute walk test (6MWT): 1) walking with your comfortable speed, 2) walking while carrying a tray with glasses, 3) walking with a verbal cognitive task. The TUG test was repeated three successful times on each condition. For the 6MWT, participants were tested one time. Results: The CI group walked slower than the CN group at the three conditions on the TUG test. However, there was no significant difference between two groups to each condition. A significant effect of dual tasking was found only in error of verbal cognitive task condition for the TUG test (p<0.05). On the 6MWT, the participants in the CI group walked short distance rather than the CN group (p<0.05). There were significant differences between two groups not only at all conditions but also at error of verbal cognitive task condition as well (p<0.05). Conclusions: To consider the results of different distances such as the TUG test and the 6MWT, we think that exercises in long distance would be more effective to patients with CI. Those would be improved patient's endurance in cognitive problem.

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF