• 제목/요약/키워드: active galactic nuclei (AGN)

검색결과 92건 처리시간 0.024초

Probing the millimeter/radio polarization of active galactic nuclei

  • Trippe, Sascha
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.34.1-34.1
    • /
    • 2012
  • I present an analysis of the linear polarization of six active galactic nuclei (AGN). We monitored our targets from 2007 to 2011 in the observatory-frame frequency range 80-253 GHz with the Plateau de Bure Interferometer (PdBI). We find average degrees of polarization in the range 2-7%; this indicates that the polarization signals are effectively averaged out by the emitter geometries. We see indication for the presence of strong shocks and/or variability of the emitter geometries. We attempt to derive rotation measures for all sources, leading to actual measurements for two targets which find the highest rotation measures reported to date for AGN.

  • PDF

THEORETICAL CONSIDERATIONS ON THE VARIABILITY OF ACTIVE GALACTIC NUCLEI

  • PARK SEOK JAE
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.97-98
    • /
    • 1996
  • Variability of active galactic nuclei is now a well-known phenomenon. This remains to be fully explained by a theoretical model of the central engine. Time scales of AGN variability seem to range continuously from hours up to months. The short time scale variability must be related to the phenomena on the event horizon of the black hole, while the long one to those in the accretion disk or surrounding matter. Based on the axisymmetric, nonstationary model of the central engine, we discuss theoretical considerations on the variability of active galactic nucleus.

  • PDF

VIMAP: AN INTERACTIVE PROGRAM PROVIDING RADIO SPECTRAL INDEX MAPS OF ACTIVE GALACTIC NUCLEI

  • Kim, Jae-Young;Trippe, Sascha
    • 천문학회지
    • /
    • 제47권5호
    • /
    • pp.195-199
    • /
    • 2014
  • We present a GUI-based interactive Python program, VIMAP, which generates radio spectral index maps of active galactic nuclei (AGN) from Very Long Baseline Interferometry (VLBI) maps obtained at different frequencies. VIMAP is a handy tool for the spectral analysis of synchrotron emission from AGN jets, specifically of spectral index distributions, turn-over frequencies, and core-shifts. In general, the required accurate image alignment is difficult to achieve because of a loss of absolute spatial coordinate information during VLBI data reduction (self-calibration) and/or intrinsic variations of source structure as function of frequency. These issues are overcome by VIMAP which in turn is based on the two-dimensional cross-correlation algorithm of Croke & Gabuzda (2008). In this paper, we briefly review the problem of aligning VLBI AGN maps, describe the workflow of VIMAP, and present an analysis of archival VLBI maps of the active nucleus 3C 120.

Estimating Black Hole Mass in Active Galactic Nuclei with Hydrogen Brackett lines

  • 김도형;임명신
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.32.2-32.2
    • /
    • 2010
  • Red dusty Active Galactic Nuclei (AGNs) are suspected to mid-stage between ULIRG and AGN phase. As well as, they are suspected that they have more than 50% of AGN population. To understand character of red AGN, Black Hole (BH) mass of red AGN is a key property and haven't measured by existing method such as reverberation mapping and single epoch method. So we still don't know their character and properties clearly. To estimate properties of red AGNs escape from effect of dust-obscuration, we have obtained Near InfraRed (NIR) spectra of 31 reverberation mapped AGNs and 49 Palomar-Green(PG) Quasi-Stellar Object (QSO) using the infrared camera (IRC) for AKARI with unique wavelength range 2.5-$5.0{\mu}m$. From this spectra, we measured the FWHM and luminosity of brackett ${\alpha}$, ${\beta}$ at 4.0, 2.6 micron meter for deriving new BH mass estimators based on the properties of Brackett line emission.

  • PDF

AGN WITH AKARI AND HERSCHEL

  • Barthel, Peter
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.179-183
    • /
    • 2017
  • AKARI and the subsequent Herschel Space Observatory have yielded tremendous advancement in our knowledge of the infrared-submillimeter properties of active galaxies and active galactic nuclei, AGN. This short review describes some highlights. Active galaxies are found to do what they are supposed to do: build up their stellar bodies while building up their central black holes.

MULTIPLE EMISSION STATES IN ACTIVE GALACTIC NUCLEI

  • Park, Jong-Ho;Trippe, Sascha
    • 천문학회지
    • /
    • 제45권6호
    • /
    • pp.147-156
    • /
    • 2012
  • We present a test of the emission statistics of active galactic nuclei (AGN), probing the connection between the red-noise temporal power spectra and multi-modal flux distributions known from observations. We simulate AGN lightcurves under the assumption of uniform stochastic emission processes for different power-law indices of their respective power spectra. For sufficiently shallow slopes (power-law indices (${\beta}{\leq}1$), the flux distributions (histograms) of the resulting lightcurves are approximately Gaussian. For indices corresponding to steeper slopes (${\beta}{\geq}1$), the flux distributions become multi-modal. This finding disagrees systematically with results of recent mm/radio observations. Accordingly, we conclude that the emission from AGN does not necessarily originate from uniform stochastic processes even if their power spectra suggest otherwise. Possible mechanisms include transitions between different activity states and/or the presence of multiple, spatially disconnected, emission regions.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권1호
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

Modeling Grain Rotational Disruption by Radiative Torques and Extinction of Active Galactic Nuclei

  • Giang, Nguyen Chau;Hoang, Thiem
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.66.1-66.1
    • /
    • 2021
  • Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward Far-Ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a < 0.1 ㎛ in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to Mid-Infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a > 0.1 ㎛ are significantly disrupted to smaller sizes by RATD up to dRATD > 100 pc in the polar direction and dRATD ~ 10 pc in the torus region. Consequently, optical-MIR extinction decreases, whereas FUV-near-Ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to selective visual extinction ratio thus significantly drops to RV < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of RV with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a <0.05 ㎛ is the key for explaining the dichotomy observed "SMC" and "gray" extinction curve toward many AGN.

  • PDF

Establishing New Black Hole Mass Estimators of Active Galactic Nuclei with Hydrogen Brackett Lines

  • 김도형;임명신
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.51.2-51.2
    • /
    • 2012
  • Red Active Galactic Nuclei (AGNs) are suspected to intermediate stage between ULIRG and AGN phase. As well as, red AGNs are suspected to have more than 50% of whole AGN population. For understanding the characteristics of red AGN, Black Hole (BH) mass is a key property and can not be estimated by existed method such as reverberation mapping and single epoch method using 5100A continuum and Balmer lines. Thus we still don't know their characteristics and properties in clearly. To estimate properties of red AGNs without the effect of dust extinction, we obtained Near InfraRed (NIR) spectra of 31 reverberation mapped AGNs and 49 Palomar-Green(PG) Quasi-Stellar Objects (QSOs) by using the infrared camera (IRC) of AKARI space telescope with unique wavelength range 2.5-5.0 ${\mu}m$. Upon this spectra, we measured the FWHM and luminosity of Brackett ${\alpha}$ and ${\beta}$ lines for deriving new BH mass estimators of AGNs.

  • PDF

Multiple Emission States in Active Galactic Nuclei

  • 박종호
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.45-45
    • /
    • 2013
  • We present a test of the emission statistics of active galactic nuclei (AGN), probing the connection between the red-noise temporal power spectra and multi-modal flux distributions known from observations. We simulate AGN lightcurves under the assumption of uniform stochastic emission processes for different power-law indices of their respective power spectra. For sufficiently shallow slopes (power-law indices beta ${\leq}$ 1.0), the flux distributions (histograms) of the resulting lightcurves are approximately Gaussian. For indices corresponding to steeper slopes (beta ${\geq}$ 1.0), the flux distributions become multi-modal. This finding disagrees systematically with result of recent mm/radio observations. Accordingly, we conclude that the emission from AGN does not necessarily originate from uniform stochastic processes even if their power spectra suggest otherwise. Possible mechanisms include transitions between different activity states and/or the presence of multiple, spatially disconnected, emission regions.

  • PDF