• 제목/요약/키워드: active force control

검색결과 528건 처리시간 0.032초

PZT Actuator를 이용한 외팔보의 능동진동제어 (Active Vibration Control of Cantilever Beams Using PZT Actuators)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1293-1300
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

A Novel Nonmechanical Finger Rehabilitation System Based on Magnetic Force Control

  • Baek, In-Chul;Kim, Min Su;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.155-161
    • /
    • 2017
  • This paper presents a new nonmechanical rehabilitation system driven by magnetic force. Typically, finger rehabilitation mechanisms are complex mechanical systems. The proposed method allows wireless operation, a simple configuration, and easy installation on the hand for active actuation by magnetic force. The system consists of a driving coil, driving magnets (M1), and auxiliary magnets (M2 and M3), respectively, at the finger, palm, and the center of coil. The magnets and the driving coil produce three magnetic forces for an active motions of the finger. During active actuations, magnetic attractive forces between M1 and M2 or between M1 and M3 enhance the flexion/extension motions. The proposed system simply improves the extension motion of the finger using a magnetic system. In this system, the maximum force and angular variation of the extension motion were 0.438 N and $49^{\circ}$, respectively. We analyzed the magnetic interaction in the system and verified finger's active actuation.

전동식 직접 구동형 능동 엔진 마운트의 설계 (Design of Active Control Engine Mount Using Direct Drive Electrodynamic Actuator)

  • 박현기;이보하;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1106-1111
    • /
    • 2007
  • This paper is focused on design of a new active control engine mount (ACM), which is compact in size and cost effective. The ACM, consisting of an electrodynamic actuator as the active element, flat springs and a sliding ball joint, is different in structure from the previous ACM designs based on the conventional hydraulic engine mount. Dynamic characteristics of the proposed ACM are extensively investigated before a prototype ACM, which meets the design specifications, is built in the laboratory. For cost effectiveness, a feed-forward control algorithm without a feedback sensor is used for reduction of the transmitted force through the ACM from the engine. The prototype ACM is then harmonic-tested with a rubber testing machine for verification of its control performance as well as adequacy of modeling. Experimental results show that the proposed ACM is capable of reducing the transmitted force by 20 dB up to the frequency range of 60 Hz.

  • PDF

전자기 액츄에이터를 이용한 진동제어시스템 (A Design of Active Vibration Control System Using Electromagnetic Actuators)

  • 이주훈;전정우;미티카 카라이아니;강동식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.936-939
    • /
    • 2006
  • The pneumatic isolator is widely adopted for anti-vibration of precision measuring and manufacturing equipments. But, when the precision demand on anti-vibration is extreme or the load is moving, the performance of anti-vibration can not meet satisfaction. In these cases, as a complementary, active vibration suppression system can be added for advanced performance. In this paper, an active control system is presented, which uses electromagnetic actuators for vibration suppression. The anti-vibration characteristic of pneumatic isolator is analyzed for system modeling and actuator specifying. The modeling and the 3D dynamic simulation is performed for control system design. For the electromagnetic actuator design, the magnetic flex density and the current-force characteristic analysis are achieved.

  • PDF

Active Stick 제어기 개발에 관한 연구 (A study of an Active Stick Controlling System with Friction Observer)

  • 김명열;남윤수
    • 산업기술연구
    • /
    • 제24권B호
    • /
    • pp.207-214
    • /
    • 2004
  • An active stick which supplies force feedback to the operator is developed in this study. A mathematical model of the active stick is derived, and compared with the experimental result. It turns out that the frictional torque due to the mechanical contacts of several parts of the stick is one of the major barriers to achieve high precision operation of the stick. The frictional effect of the stick is cancelled out by using a friction observer. The efficacy of the friction observer is verified through the numerical simulation. Because of the observer dynamics, there are some limitations in exact recovering the static friction and Stribeck effect. However, the friction observer follows the real friction on the average. It's anticipated that the application of the friction observer to the closed loop control of the active stick improves the performance of the displacement versus force characteristics, which will be proved experimentally in the further study.

  • PDF

격자 확률신경망 기법을 이용한 구조물의 능동 제어 (Active Control of Structures Using Lattice Probabilistic Neural Network)

  • 김동현;장성규;권순덕;김두기
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.662-667
    • /
    • 2007
  • A new neuro-control scheme for active control of structures is proposed. It utilizes lattice pattern of state vector as training data of probabilistic neural network(PNN). Therefore. it is the so-called lattice probabilistic neural network(LPNN). PNN makes control forces by using all the training patterns. Therefore, it takes much time to obtain a control force in application. This inevitably may delay the control action. However. control force of LPNN is calculated by using only the adjacent information of LPNN input. So, the response of LPNN is greatly faster than PNN. The proposed control algorithm is applied for three story building under California and El Centro earthquakes. Also, control results of the LPNN are compared with those of the conventional PNN. The structural responses have been suppressed effectively by the proposed algorithm.

끝단이 탄성 지지된 강체판의 최적진동제어 (Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges)

  • 이성기;윤신일;한상보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF

타이어 횡력 제한 조건 하에서 ESC와 AFS를 이용한 통합 섀시 제어 (Unified Chassis Control with ESC and AFS under Lateral Tire Force Constraint on AFS)

  • 임성진;남기홍;이호석
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.595-601
    • /
    • 2015
  • This paper presents an unified chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. When generating the control yaw moment, an optimization problem is formulated in order to determine the tire forces, generated by ESC and AFS. With Karush-Kuhn-Tucker optimality condition, the optimum tire forces can be algebraically calculated. On low friction road, the lateral force in front wheels is easily saturation. When saturated, AFS cannot generate the required control yaw moment. To cope with this problem, new constraint on the lateral tire force is added into the original optimization problem. To check the effectiveness of the propose method, simulation is performed on the vehicle simulation package, CarSim.

전자기력을 이용한 능동제진

  • 손규태;유원희;박영필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.179-183
    • /
    • 2001
  • Vibration isolation of mechanical systems, in general is achieved through either passive or active vibration control system. Although passive vibration isolators offer simple and reliable means to protect mechanical system from vibration environment, passive vibration isolator has inherent performance limitation. Whereas, active vibration isolator provide significantly superior vibration-isolation performance. Recently, many studied and applications are carried out in this field. In this study, vibration-isolation characteristics of active vibration control system using electromagnetic force actuator are investigated. Some control algorithms. Optimal Feedforward are used for active vibration isolation. Form the experimental results of each control algorithms, active vibration isolation characteristics are investigated.

Wind-Induced Vibration Control of a Tall Building Using Magneto-Rheological Dampers: A Feasibility Study

  • Gu, Ja-In;Kim, Saang-Bum;Yun, Chung-Bang;Kim, Yun-Seok
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.61-68
    • /
    • 2003
  • A recently developed semi-active control system employing magneto-rheological (MR) fluid dampers is applied to vibration control of a wind excited tall building. The semi-active control system with MR fluid dampers appears to have the reliability of passive control devices and the adaptability of fully active control systems. The system requires only small power source, which is critical during severe events, when the main power source may fail. Numerical simulation studies are performed to demonstrate the efficiency of the MR dampers on the third ASCE benchmark problem. Multiple MR dampers are assumed to be installed in the 76-story building. Genetic algorithm is applied to determine the optimal locations and capacities of the MR dampers. Clipped optimal controller is designed to control the MR dampers based on the acceleration feedback. To verify the robustness with respect to the variation of the external wind force, several cases with different wind forces are considered in the numerical simulation. Simulation results show that the semi-actively controlled MR dampers can effectively reduce both the peak and RMS responses the tall building under various wind force conditions. The control performance of the MR dampers for wind is found to be fairly similar to the performance of an active tuned mass damper.

  • PDF