• Title/Summary/Keyword: active dispersion-correction scheme

Search Result 2, Processing Time 0.016 seconds

Active Dispersion-Correction Scheme of 2-D Finite Element Model for Simulation of Tsunami Propagation (지진해일 전파 수치모의를 위한 2차원 유한요소모형의 능동적 분산보정기법)

  • Yoon Sung Bum;Lim Chae Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • For the simulation of tsunami propagation an active dispersion-correction two-dimensional finite element model has been developed based on a shallow-water wave equation. This model employs an arbitrary triangular mesh and an explicit time integration scheme. However, the physical dispersion effects as included in the Boussinesq equations can be taken into account in the computation. The validity of the dispersion-correction scheme developed in this study is verified through the comparison of numerical solutions calculated using the new scheme with analytical ones considering dispersion effect of waves. As a result, the present model is shown to be considerably accurate.

Dispersion-Correction of 1-D Finite Element Model for Tsunami Propagation Using Explicit Scheme (양해법을 이용한 일차원 지진해일 전파 유한요소모형의 분산보정)

  • 윤성범;임채호;윤기승;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.57-63
    • /
    • 2004
  • Wave lengths of tsunamis are shorter than those of tides, and the dispersion effect of tsunamis is relatively strong. Thus, it should be properly considered in the numerical simulation of distant tsunami propagation for better accuracy. In the present study an active dispersion-correction scheme using explicit scheme is developed to take into account the dispersion effect in the simulation of tsunami propagation using one-dimensional finite element method based on wave equation. The validity of the dispersion-correction scheme proposed in this study is confirmed through the comparision of numerical solutions calculated using the present scheme with analytical ones considering dispersion effect of waves.