• Title/Summary/Keyword: active cooling

Search Result 174, Processing Time 0.026 seconds

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

Diagnostic Technique for Cast Resin Molded Transformer Windings Using Active Thermography

  • Lim Young-Bae;Jung Jong-Wook;Jung Jin-Soo;Cho Seong-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • Temperature distribution measured to estimate the condition of an electrical apparatus is an absolute reference for the apparatus conditions and the difference between the reference temperature and the current temperature. Because of passive thermography, without the external thermal stimulation, the difference in surface temperature between the region of interest and back ground shows that the results can apply only to the estimation or the monitoring for the condition of loose terminal and the overload pertaining to the rise in temperature. However, a thermal diffusion in the active thermography is differently generated by the structure and condition of the surface and subsurface. This paper presents a nondestructive test using this behavior and deals with the results by heat injection and cooling to the apparatus. The buried discontinuity of subsurface could be detected by these techniques.

Reducing Train Weight and Simplifying Train Design by Using Active Redundancy of Static Inverters for the Onboard Supply of Rolling Stock

  • Bachmann, G.;Wimmer, D.
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.89-93
    • /
    • 2008
  • Reliability of onboard power supply systems on rolling stock is a very important issue for the railway operator. While a failure of the HVAC supply results in a loss of comfort for the passengers, a failure of the supply for air compressors or for the traction cooling systems results in towing the train. This is, looking at the required availability of a train, not acceptable. An active redundancy concept for the onboard power supply maximizes the availability of the system. This paper describes such a system under the aspect of $\cdot$ Weight reduction $\cdot$ Continuous operation when changing from normal to redundant operation $\cdot$ Flexibility in train design.

  • PDF

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Thermal Cracking Control of Mass Concrete by Vertical Pipe Cooling Method (연직파이프쿨링 공법에 의한 매스콘크리트 온도균열 제어)

  • Seo, Tae-Seok;Lim, Chang-Keun;Cho, Yun-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.233-238
    • /
    • 2014
  • In case of the slender mass concrete like attached wall, retaining wall and bridge tower, the low heat cement and the control joint are mainly used for thermal cracking control. However, even if these cracking control methods are considered, it is impossible to control thermal cracks perfectly, because the external restraint is largely in these mass concrete. Because these cracks occurring in slender mass concrete members almost penetrate concrete member, the special cracking control is demanded in these mass concretes. The vertical pipe cooling method improving existing pipe cooling method was developed for the active thermal cracking control of slender mass concrete, and applied at the field attached wall. In results, the maximum temperature dropped more than $10^{\circ}C$ by vertical pipe cooling method, and the cracks decreased about more than 50%.

Analyzing the Cooling Effect of Urban Green Areas by Using the Multiple Observation Network in the Seonjeongneung Region of Seoul, Korea (최근 2년간 서울 선정릉 지역의 복합센서 관측망을 활용한 녹지 냉각효과 분석)

  • Kim, Geun-Hoi;Lee, Young-Gon;Lee, Dae-Geun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1475-1484
    • /
    • 2016
  • To analyze the cooling effect of urban green areas, we conducted micrometeorological measurements in these areas and their surroundings in Seoul, Korea. From the average hourly temperature measurements through each month for the last two years (March 2013 to February 2015), we found that the maximum temperature difference between urban and green areas was about $2.9^{\circ}C$ at 16:00 LST in summer, and the minimum was about $1.7^{\circ}C$ at 22:00 LST in winter. In summer, the temperature difference was the largest during the day, rather than at night, due mainly to shading by the tree canopy. The specific humidity difference between the two areas was about $1.5g\;kg^{-1}$ in summer, and this decreased in the winter. The specific humidity difference between urban and green areas in summer is relatively large during the day, due to the higher evapotranspiration level of biologically active plants.

Assessment of N-16 activity concentration in Bangladesh Atomic Energy Commission TRIGA Research Reactor

  • Ajijul Hoq, M.;Malek Soner, M.A.;Salam, M.A.;Khanom, Salma;Fahad, S.M.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.165-169
    • /
    • 2018
  • An assessment for determining N-16 activity concentrations during the operation condition of Bangladesh Atomic Energy Commission TRIGA Research Reactor was performed employing several governing equations. The radionuclide N-16 is a high energy (6.13 MeV) gamma emitter which is predominately created by the fast neutron interaction with O-16 present in the reactor core water. During reactor operation at different power level, the concentration of N-16 at the reactor bay region may increase causing radiation risk to the reactor operating personnel or the general public. Concerning the safety of the research reactor, the present study deals with the estimation of N-16 activity concentrations in the regions of reactor core, reactor tank, and reactor bay at different reactor power levels under natural convection cooling mode. The estimated N-16 activity concentration values with 500 kW reactor power at the reactor core region was $7.40{\times}10^5Bq/cm^3$ and at the bay region was $3.39{\times}10^5Bq/cm^3$. At 3 MW reactor power with active forced convection cooling mode, the N-16 activity concentration in the decay tank exit water was also determined, and the value was $4.14{\times}10^{-1}Bq/cm^3$.

Safety Analysis of APR+ PAFS for CDF Evaluation (노심손상빈도 평가를 위한 APR+ PAFS의 안전 해석)

  • Kang, Sang Hee;Moon, Ho Rim;Park, Young Seop
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The Advanced Power Reactor Plus(APR+), which is a GEN III+ reactor based on the APR1400, is being developed in Korea. In order to enhance the safety of the APR+, a passive auxiliary feedwater system(PAFS) has been adopted in the APR+. The PAFS replaces the conventional active auxiliary feedwater system(AFWS) by introducing a natural driving force mechanism while maintaining the system function of cooling the primary side and removing the decay heat. As the PAFS completely replaces the conventional AFWS, it is required to verify the cooling capacity of PAFS for the core damage frequency(CDF) evaluation. For this reason, this paper discusses the cooling performance of the PAFS during transient accidents. The test case and scenarios were picked from the result of the sensitivity analysis in APR+ Probabilistic Safety Assessment(PSA). The analysis was performed by the best estimate thermal-hydraulic code, RELAP5/.MOD3.3. This study shows that the plant maintains the stable state without the core damages under the given test scenarios. The results of PSA considering this analysis' results shows that the CDF values are decreased. The analysis results can be used for more realistic and accurate performance of a PSA.

A Study on a Conceptual Design Process of Fuel Feeding Systems for High-Speed Vehicles (초고속 비행체 연료공급시스템 개념설계과정 연구)

  • Lee, Hyung Ju;Park, Jeongbae;Kwon, Minchan;Hwang, Ki-Young
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.7-14
    • /
    • 2013
  • Hypersonic vehicles over Mach 5 need active cooling or thermal management systems to resolve excessive heating problems on their fuselage and engines. Endothermic fuels are widely used these days not only for the energy source but also for a heat sink. Therefore, fuel supply systems of hypersonic vehicles should be mainly composed of adiabatic fuel storage tank, cooling systems for the airframe and engine/nozzle, and fuel supply/injection systems in high pressure, high temperature, and high fuel flow rate conditions. This paper describes a conceptual design process of a hypersonic fuel supply system in order for designing a layout of the system, and identifying components and their specification requirements.