• Title/Summary/Keyword: active cooling

Search Result 175, Processing Time 0.032 seconds

1.31 um Uncooled DFB-LD with High Slope Efficiency for G-PON Application (G-PON용 높은 전광변환효율을 갖는 1.31 um 비냉각 DFB-LD)

  • Kim, Jeong-Ho;Pi, Joong-Ho;Kim, Deok-Hyun;Park, Chil-Sung;Ryu, Han-Gwon;Koo, Bon-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.333-336
    • /
    • 2007
  • A Strained Layer Multiquantum-Well (SL-MQW) distributed feedback laser at a wavelength of 1.31 um operating from $-40^{\circ}C$ to $85^{\circ}C$ without any cooling is grown by metal-organic chemical vapor deposition (MOCVD). Lasers with high slope efficiency are achieved through careful optimization of a SL-MQW active layer, especiallyoptimizing the amount of strain, the well thickness, the barrier thickness, the number of wells, and the active layer width. In this paper, we obtain the slope efficiencies of 0.38[mW/mA] and 0.26 [mW/mA] at $25^{\circ}C$ and $85^{\circ}C$, respectively. Threshold currents are 7.1[mA] and 19.8[mA] at $25^{\circ}C$ and $85^{\circ}C$, respectively.

Development of High Voltage, High Efficiency DC-DC Power Module for Modern Shipboard Multi-Function AESA Radar Systems (함정용 다기능 AESA 레이더 시스템을 위한 고전압·고효율 DC-DC 전원모듈 개발)

  • Chong, Min-Kil;Lee, Won-Young;Kim, Sang-Keun;Kim, Su-Tae;Kwon, Simon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • For conventional AESA radars, DC-DC power modules using 300 Vdc have low efficiency, high volume, heavy weight, and high price, which have problems in modularity with T/R module groups. In this paper, to improve these problems, we propose a distributed DC-DC power module with high-voltage 800 Vdc and high-efficiency Step-down Converter. In particular, power requirements for modern and future marine weapons systems and sensors are rapidly evolving into high-energy and high-voltage power systems. The power distribution of the next generation Navy AESA radar antenna is under development with 1000 Vdc. In this paper, the proposed highvoltage, high-efficiency DC-DC power modules increase space(size), weight, power and cooling(SWaP-C) margins, reduce integration costs/risk, and reduce maintenance costs. Reduced system weight and higher reliability are achieved in navy and ground AESA systems. In addition, the proposed architecture will be easier to scale with larger shipboard radars and applicable to other platforms.

Energy Performance Evaluation of Zero Energy Technologies for Zero Energy Multi-House (공동주택의 에너지 자립을 위한 핵심요소기술의 에너지 성능평가)

  • Yoon, Jong-Ho;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.161-167
    • /
    • 2007
  • Zero Energy Multi-House(ZeMH) signifies a residential building which can be self sufficient with just new and renewable energy resources without the aid of any existing fossil fuel. For success of ZeMH, various innovative energy technologies Including passive and active systems should be well integrated with a systematic design approach. The first step for ZeMH is definitely to minimize the conventional heating and cooling loads over 50% with major energy conservation measure and passive solar features which are mainly related to building design components such as super-insulation, super window, including infiltration and ventilation issues. The purpose of this study is to analyze the thermal effect of various building design components in the early design of ZeMH. The process of the study is presented in the following. 1) selection reference model for simulation 2) verification of reference model with computer simulation program(ESP-r 9.0). 3) analysis of effect according to insulation-thickness, kinds of windows, rate of infiltration. and The simulation results indicate that almost 50% savings of conventional heating load in multi-house can be achieved with the optimum design of building components such as super insulation, super window, infiltration, ventilation.

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

A simulation analysis of PV application method effect on electric power performance in an apartment wall facade (아파트 입면형 PV적용방식의 발전성능효과해석 연구)

  • Seo, Jung-Hun;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • The objective of this study is to investigate the effect of building integrated PV application method on power generation. PV modules were integrated to a hypothetical apartment building facade in Seoul, Korea. Three different design options of PV panel mounted on exterior wall were developed for the analysis of cooling effects through ventilation. Numerical simulations using TRNSYS coupled with COMIS were executed to evaluate the design options. Their facade configurations are such as vertically installed PV panels with or without air gap between PV rear surface and exterior wall surface, and the tilted PV panels attached to the exterior wall at an angle of to the horizontal. Parametric results show that there is little difference regardless of the air 9ap width between PV rear surface and exterior wall surface. Special strategies which could effectively cool a PV panel to increase the electric power are required if we prefer to a vertical facade configuration in a building integrated PV installation. Consequently, it is expected that there is no reason for architect to install vertically PV panels with air gap unless active strategies are considered.

A Study on the Post-Occupancy Evaluation of the Types of the Learning Space Unit in Elementary Schools (열린 학교 단위학습공간의 구성유형별 건물성능평가에 관한 연구 - 대구광역시 소재 초등학교를 대상으로 -)

  • Choi, Jae-Young;Lee, Sang-Hong;Choi, Moo-Hyuck
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2003
  • The purpose of this study is to find problems and to provide architectural design standards of the Learning Space Unit(L.S.U.) in Elementary Schools through the Post-occupancy Evaluation(POE). In this study, we found six major problems of the type of the L.S.U. in elementary schools. More than 50% of users expressed dissatisfactions in these items : size, safety, cooling facility, noise, privacy and primary meaning for its original purpose. After the interrelation-analysis, we checked pros and cons about each forms of L.S.U. It is the result of analysis of the layout method in L.S.U. 1) "$8.4m{\times}8.4m$" classroom unit got the highest positive responses 2) "2-classroom type" and "4-classroom type" got higher score than "3-classroom type" 3) "Whole faced type" 1) made more active Multi-space than "Partial faced type" 4) prefered prepared "Open-classroom" to "Closed-classroom" 5) 'Zoning type between L.S.U.s' couldn't influence to user's responses. Designers can consult those informations when they plan a new, remodeling and additional elementary school.

Research for Actively Reducing Infrared Radiation by Thermoelectric Refrigerator (열전소자를 이용한 적외선 방사량 감소 기술에 관한 연구)

  • Kim, Hoon;Kim, Kyomin;Kim, Woochul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.199-204
    • /
    • 2017
  • We introduced a technology for reducing infrared radiation through the active cooling of hot surfaces by using a thermoelectric refrigerator. Certain surfaces were heated by aerodynamic heating, and the heat generation processes are proposed here. We calculated the temperatures and radiations from surfaces, while using thermoelectric refrigerators to cool the surfaces. The results showed that the contrast between the radiations of certain surfaces and the ambient environments can be removed using thermoelectric refrigerators.

Connection Algorithm Proposal of Real Time Digital Simulator with Miniaturized HTS SMES (소형 HTS SMES와 실시간 전력계통 시뮬레이터의 연계 알고리즘 제안)

  • Kim, A-Rong;Kim, Gyeong-Hun;Kim, Kwang-Min;Park, Min-Won;Yu, In-Keun;Sim, Ki-Deok;Kim, Seok-Ho;Seong, Ki-Chul;Park, Young-Il;Kim, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.96-101
    • /
    • 2010
  • Superconducting Magnetic Energy Storage (SMES) system is one of the key technologies to overcome the voltage sag, swell, interruption and frequency fluctuation by fast response speed of current charge and discharge. In order to evaluate the characteristics of over mega joule class grid connected High Temperature Superconducting (HTS) SMES system, the authors proposed an algorithm by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the proposed algorithm, users can perform the simulation of voltage sag and frequency stabilization with a real SMES coil in real time and easily change the capacity of SMES system as much as they need. To demonstrate the algorithm, real charge and discharge circuit and active load were manufactured and experimented. The results show that the current from real system was well amplified and applied to the current source of simulation circuit in real time.

A Basic Study on Accelerated Life Test Method and Device of DSA (Dimensionally Stable Anode) Electrode (촉매성 산화물 전극 (DSA, Dimensionally Stable Anode)의 가속수명 테스트 방법과 장치에 관한 기초 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.467-475
    • /
    • 2018
  • The lifetime of the electrode is one of the most important factors on the stability of the electrode. Since the lifetime of the DSA (Dimensionally stable anode) electrode is long, an accelerated lifetime test is required to reduce the test time. Beacuse there is no basis or standard method for accelerated lifetime testing, many researchers use different methods. Therefore, there is a need for basis and methods for accelerated lifetime testing that other researchers can follow. We designed a reactor system for accelerated lifetime testing and planned specific methods. Reactor system was circulating batch reactor. Reactor volume and cooling water tank were 12.5 L and 100 L, respectively. Electrode size was $2cm{\times}3cm$ (real electrolysis area, $5cm^2$). In order to maintain the harsh conditions, accelerated lifetime test was carried out in a high current density ($0.6A/cm^2$) and low electrolyte concentration (NaCl, 0.068 mol/L). Maintaining a constant temperature was an important operation parameter for exact accelerated lifetime test. As the accelerated lifetime test progressed, the active component of electrode surface was consumed and desorption occurred. At the point of 5 V rise, corrosion of the surface of the base material(titanium) also started.

Numerical Prediction of the Base Heating due to Rocket Engine Clustering (로켓엔진 병렬화에 의한 저부가열의 수치적 예측)

  • Kim Seong Lyong;Kim Insun
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.18-25
    • /
    • 2004
  • Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.