• Title/Summary/Keyword: active contour model

Search Result 163, Processing Time 0.024 seconds

Synthesis and Ligand Based 3D-QSAR of 2,3-Bis-benzylidenesuccinaldehyde Derivatives as New Class Potent FPTase Inhibitor, and Prediction of Active Molecules

  • Soung, Min-Gyu;Kim, Jong-Han;Kwon, Byoung-Mog;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1355-1360
    • /
    • 2010
  • In order to search new inhibitors against farnesyl protein transferase (FPTase), a series of 2,3-bis-benzylidenesuccinaldehyde derivatives (1-29) were synthesized and their inhibition activities ($pI_{50}$) against FPTase were measured. From based on the reported results that the inhibitory activities of dimers 2,3-bis-benzylidenesuccinaldehydes were higher than those of monomers cinnamaldehydes, 3D-QSARs on FPTase inhibitory activities of the dimers (1-29) were studied quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The statistical qualities of the optimized CoMFA model II ($r^2{_{cv.}}$= 0.693 and $r^2{_{ncv.}}$= 0.974) was higher than those of the CoMSIA model II ($r^2{_{cv.}}$ = 0.484 and $r^2{_{ncv.}}$ = 0.928). The dependence of CoMFA models on chance correlations was evaluated with progressive scrambling analyses. And the inhibitory activity exhibited a strong correlation with steric factors of the substrate molecules. Therefore, from the results of graphical analyses on the contour maps and of predicted higher inhibitory active compounds, it is suggested that the structural distinctions and descriptors that contribute to inhibitory activities ($pI_{50}$) against FPTase will be able to applied new inhibitor design.

Robust Face and Facial Feature Tracking in Image Sequences (연속 영상에서 강인한 얼굴 및 얼굴 특징 추적)

  • Jang, Kyung-Shik;Lee, Chan-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1972-1978
    • /
    • 2010
  • AAM(Active Appearance Model) is one of the most effective ways to detect deformable 2D objects and is a kind of mathematical optimization methods. The cost function is a convex function because it is a least-square function, but the search space is not convex space so it is not guaranteed that a local minimum is the optimal solution. That is, if the initial value does not depart from around the global minimum, it converges to a local minimum, so it is difficult to detect face contour correctly. In this study, an AAM-based face tracking algorithm is proposed, which is robust to various lighting conditions and backgrounds. Eye detection is performed using SIFT and Genetic algorithm, the information of eye are used for AAM's initial matching information. Through experiments, it is verified that the proposed AAM-based face tracking method is more robust with respect to pose and background of face than the conventional basic AAM-based face tracking method.

A Study on Facial Wrinkle Detection using Active Appearance Models (AAM을 이용한 얼굴 주름 검출에 관한 연구)

  • Lee, Sang-Bum;Kim, Tae-Mook
    • Journal of Digital Convergence
    • /
    • v.12 no.7
    • /
    • pp.239-245
    • /
    • 2014
  • In this paper, a weighted value wrinkle detection method is suggested based on the analysis on the entire facial features such as face contour, face size, eyes and ears. Firstly, the main facial elements are detected with AAM method entirely from the input screen images. Such elements are mainly composed of shape-based and appearance methods. These are used for learning the facial model and for matching the face from new screen images based on the learned models. Secondly, the face and background are separated in the screen image. Four points with the biggest possibilities for wrinkling are selected from the face and high wrinkle weighted values are assigned to them. Finally, the wrinkles are detected by applying Canny edge algorithm for the interested points of weighted value. The suggested algorithm adopts various screen images for experiment. The experiments display the excellent results of face and wrinkle detection in the most of the screen images.

Feature Points Tracking of Digital Image By One-Directional Iterating Layer Snake Model (일방향 순차층위 스네이크 모델에 의한 디지털영상의 특징점 추적)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.86-92
    • /
    • 2007
  • A discrete dynamic model for tracking feature points in 2D images is developed. Conventional snake approaches deform a contour to lock onto features of interest within an image by finding a minimum of its energy functional, composed of internal and external forces. The neighborhood around center snaxel is a space matrix, typically rectangular. The structure of the model proposed in this paper is a set of connected vertices. Energy model is designed for its local minima to comprise the set of alternative solutions available to active process. Block on tracking is one dimension, line type. Initial starting points are defined to the satisfaction of indent states, which is then automatically modified by an energy minimizing process. The track is influenced by curvature constraints, ascent/descent or upper/lower points. The advantages and effectiveness of this layer approach may also be applied to feature points tracking of digital image whose pixels have one directional properties with high autocorrelation between adjacent data lines, vertically or horizontally. The test image is the ultrasonic carotid artery image of human body, and we have verified its effect on intima/adventitia starting points tracking.

A Hippocampus Segmentation in Brain MR Images using Level-Set Method (레벨 셋 방법을 이용한 뇌 MR 영상에서 해마영역 분할)

  • Lee, Young-Seung;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1075-1085
    • /
    • 2012
  • In clinical research using medical images, the image segmentation is one of the most important processes. Especially, the hippocampal atrophy is helpful for the clinical Alzheimer diagnosis as a specific marker of the progress of Alzheimer. In order to measure hippocampus volume exactly, segmentation of the hippocampus is essential. However, the hippocampus has some features like relatively low contrast, low signal-to-noise ratio, discreted boundary in MRI images, and these features make it difficult to segment hippocampus. To solve this problem, firstly, We selected region of interest from an experiment image, subtracted a original image from the negative image of the original image, enhanced contrast, and applied anisotropic diffusion filtering and gaussian filtering as preprocessing. Finally, We performed an image segmentation using two level set methods. Through a variety of approaches for the validation of proposed hippocampus segmentation method, We confirmed that our proposed method improved the rate and accuracy of the segmentation. Consequently, the proposed method is suitable for segmentation of the area which has similar features with the hippocampus. We believe that our method has great potential if successfully combined with other research findings.

Geometric Snakes for Triangular Meshes (삼각 메쉬를 위한 기하학 스네이크)

  • Lee, Yun-Jin;Lee, Seung-Yong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • Feature detection is important in various mesh processing techniques, such as mesh editing, mesh morphing, mesh compression, and mesh signal processing. In this paper, we propose a geometric snake as an interactive tool for feature detection on a 3D triangular mesh. A geometric snake is an extension of an image snake, which is an active contour model that slithers from its initial position specified by the user to a nearby feature while minimizing an energy functional. To constrain the movement of a geometric snake onto the surface of a mesh, we use the parameterization of the surrounding region of a geometric snake. Although the definition of a feature may vary among applications, we use the normal changes of faces to detect features on a mesh.

  • PDF

Facial Feature Extraction for Face Expression Recognition (얼굴 표정인식을 위한 얼굴요소 추출)

  • 이경희;고재필;변혜란;이일병;정찬섭
    • Science of Emotion and Sensibility
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • 본 논문은 얼굴인식 분야에 있어서 필수 과정인 얼굴 및 얼굴의 주요소인 눈과 입의 추출에 관한 방법을 제시한다. 얼굴 영역 추출은 복잡한 배경하에서 움직임 정보나 색상정보를 사용하지 않고 통계적인 모델에 기반한 일종의 형찬정합 방법을 사용하였다. 통계적인 모델은 입력된 얼굴 영상들의 Hotelling변환 과정에서 생성되는 고유 얼굴로, 복잡한 얼굴 영상을 몇 개의 주성분 갑으로 나타낼 수 있게 한다. 얼굴의 크기, 영상의 명암, 얼굴의 위치에 무관하게 얼굴을 추출하기 위해서, 단계적인 크기를 가지는 탐색 윈도우를 이용하여 영상을 검색하고 영상 강화 기법을 적용한 후, 영상을 고유얼굴 공간으로 투영하고 복원하는 과정을 통해 얼굴을 추출한다. 얼굴 요소의 추출은 각 요소별 특성을 고려한 엣지 추출과 이진화에 따른 프로젝션 히스토그램 분석에 의하여 눈과 입의 경계영역을 추출한다. 얼굴 영상에 관련된 윤곽선 추출에 관한 기존의 연구에서 주로 기하학적인 모양을 갖는 눈과 입의 경우에는 주로 가변 템플릿(Deformable Template)방법을 사용하여 특징을 추출하고, 비교적 다양한 모양을 갖는 눈썹, 얼굴 윤곽선 추출에는 스네이크(Snakes: Active Contour Model)를 이용하는 연구들이 이루어지고 있는데, 본 논문에서는 이러한 기존의 연구와는 달리 스네이크를 이용하여 적절한 파라미터의 선택과 에너지함수를 정의하여 눈과 입의 윤곽선 추출을 실험하였다. 복잡한 배경하에서 얼굴 영역의 추출, 추출된 얼굴 영역에서 눈과 입의 영역 추출 및 윤곽선 추출이 비교적 좋은 결과를 보이고 있다.

  • PDF

Hologram and Receptor-Guided 3D QSAR Analysis of Anilinobipyridine JNK3 Inhibitors

  • Chung, Jae-Yoon;Cho, Art-E;Hah, Jung-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2739-2748
    • /
    • 2009
  • Hologram and three dimensional quantitative structure activity relationship (3D QSAR) studies for a series of anilinobipyridine JNK3 inhibitors were performed using various alignment-based comparative molecular field analysis (COMFA) and comparative molecular similarity indices analysis (CoMSIA). The in vitro JNK3 inhibitory activity exhibited a strong correlation with steric and electrostatic factors of the molecules. Using four different types of alignments, the best model was selected based on the statistical significance of CoMFA ($q_2\;=\;0.728,\;r_2\;=\;0.865$), CoMSIA ($q_2\;=\;0.706,\;r_2\;=\;0.960$) and Hologram QSAR (HQSAR: $q_2\;=\;0.838,\;r_2\;=\;0.935$). The graphical analysis of produced CoMFA and CoMSIA contour maps in the active site indicated that steric and electrostatic interactions with key residues are crucial for potency and selectivity of JNK3 inhibitors. The HQSAR analysis showed a similar qualitative conclusion. We believe these findings could be utilized for further development of more potent and selective JNK3 inhibitors.

Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system (컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석)

  • Park, Byung eun;Jang, Won Seuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Multiresolution-Based Active Contour Model Using Genetic Algorithm (유전자 알고리즘을 이용한 다해상도 기반의 활성 윤곽선 모델)

  • Lee, Ki-Hwan;Yoo, Hyun-Jung;Kim, Hyun-Jun;Kim, Tae-Yong;Cho, Seok-Je
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.385-386
    • /
    • 2009
  • 활성 윤곽선 모델은 스네이크 모델이라고도 하며 영상에서 물체의 경계를 검출하기위한 효과적인 방법으로 사용되고 있다. 본 논문에서는 초기 윤곽선 문제와 효과적인 경계선 검출을 위해 다해상도 기반의 유전자 알고리즘을 이용한 활성 윤곽선 모델을 제안한다. 입력영상의 해상도를 영상 피마리드 기법으로 저해상도로 축소시키고 초기 윤곽선을 설정한다. 설정된 윤곽선상의 연속된 두 좌표를 유전인자로 선택하고, 유전 연산자를 적용하여 물체의 경계를 찾아간다. 경계가 검출된 저해상도 영상을 단계적으로 확대하여, 보간될 영역의 국부적 활성 윤곽선 에너지를 계산하여 최소 에너지를 갖는 위치에 새로운 윤곽선 좌표를 삽입하여 경계를 형성한다. 제안된 방법은 초기 윤곽선의 위치에 상관없이 경계선을 검출했으며, 형태가 복잡한 물체의 경우에도 효과적으로 경계선을 검출하고 계산 복잡도를 감소시켰다.