• Title/Summary/Keyword: active SONAR

Search Result 155, Processing Time 0.021 seconds

Ocean bottom reverberation and its statistical characteristics in the East Sea (동해 해역에서 해저면 잔향음 및 통계적 특징)

  • Jung, Young-Cheol;Lee, Keun-Hwa;Seong, Woojae;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.82-95
    • /
    • 2019
  • In this study, we analyzed the beam time series of ocean reverberation which was conducted in the eastsouthern region of East Sea, Korea during the August, 2015. The reverberation data was gathered by moving research vessel towing LFM (Linear Frequency Modulation) source and triplet receiver array. After signal processing, we analyzed the variation of ocean reverberation level according to the seafloor bathymetry, source/receiver depth and sound speed profile. In addition, we used the normalized data by using cell averaging algorithm and identified the statistical characteristics of seafloor scatterer by using moment estimation method and estimated shape parameter. Also, we analyzed the coincidence of data with Rayleigh and K-distribution probability by Kolmogorov-Smirnov test. The results show that there is range dependency of reverberation according to the bathymetry and also that the time delay and the intensity level change depend on the depths of source and receiver. In addition, we observed that statistical characteristics of similar Rayleigh probability distribution in the ocean reverberation.

Detection Performance Analysis of Underwater Vehicles by Long-Range Underwater Acoustic Communication Signals (장거리 수중 음향 통신 신호에 의한 수중 운동체 피탐지 성능 분석)

  • Hyung-Moon, Kim;Jong-min, Ahn;In-Soo, Kim;Wan-Jin, Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.4
    • /
    • pp.11-22
    • /
    • 2022
  • Unlike a short-range, a long-range underwater acoustic communication(UWAC) uses low frequency signal and deep sound channel to minimize propagation loss. In this case, even though communication signals are modulated using a covert transmission technique such as spread spectrum, it is hard to conceal the existence of the signals. The unconcealed communication signal can be utilized as active sonar signal by enemy and presence of underwater vehicles may be exposed to the interceptor. Since it is very important to maintain stealthiness for underwater vehicles, the detection probability of friendly underwater vehicles should be considered when interceptor utilizes our long-range UWAC signal. In this paper, we modeled a long-range UWAC environment for analyzing the detection performance of underwater vehicles and proposed the region of interest(ROI) setup method and the measurement of detection performance. By computer simulations, we yielded parameters, analyzed the detection probability and the detection performance in ROI. The analysis results showed that the proposed detection performance analysis method for underwater vehicles could play an important role in the operation of long-range UWAC equipment.

Experimental performance analysis on the non-negative matrix factorization-based continuous wave reverberation suppression according to hyperparameters (비음수행렬분해 기반 연속파 잔향 제거 기법의 초매개변숫값에 따른 실험적 성능 분석)

  • Yongon Lee; Seokjin Lee;Kiman Kim;Geunhwan Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.32-41
    • /
    • 2023
  • Recently, studies on reverberation suppression using Non-negative Matrix Factorization (NMF) have been actively conducted. The NMF method uses a cost function based on the Kullback-Leibler divergence for optimization. And some constraints are added such as temporal continuity, pulse length, and energy ratio between reverberation and target. The tendency of constraints are controlled by hyperparameters. Therefore, in order to effectively suppress reverberation, hyperparameters need to be optimized. However, related studies are insufficient so far. In this paper, the reverberation suppression performance according to the three hyperparameters of the NMF was analyzed by using sea experimental data. As a result of analysis, when the value of hyperparameters for time continuity and pulse length were high, the energy ratio between the reverberation and the target showed better performance at less than 0.4, but it was confirmed that there was variability depending on the ocean environment. It is expected that the analysis results in this paper will be utilized as a useful guideline for planning precise experiments for optimizing hyperparameters of NMF in the future.

High-resolution range and velocity estimation method based on generalized sinusoidal frequency modulation for high-speed underwater vehicle detection (고속 수중운동체 탐지를 위한 일반화된 사인파 주파수 변조 기반 고해상도 거리 및 속도 추정 기법)

  • Jinuk Park;Geunhwan Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.320-328
    • /
    • 2023
  • Underwater active target detection is vital for defense systems, requiring accurate detection and estimation of distance and velocity. Sequential transmission is necessary at each beam angle, but divided pulse length leads to range ambiguity. Multi-frequency transmission results in time-bandwidth product losses when bandwidth is divided. To overcome these problem, we propose a novel method using Generalized Sinusoidal Frequency Modulation (GSFM) for rapid target detection, enabling low-correlation pulses between subpulses without bandwidth division. The proposed method allows for rapid updates of the distance and velocity of target by employing GSFM with minimized pulse length. To evaluate our method, we simulated an underwater environment with reverberation. In the simulation, a linear frequency modulation of 0.05 s caused an average distance estimation error of 50 % and a velocity estimation error of 103 % due to limited frequency band. In contrast, GSFM accurately and quickly tracked targets with distance and velocity estimation errors of 10 % and 14 %, respectively, even with pulses of the same length. Furthermore, GSFM provided approximate azimuth information by transmitting highly orthogonal subpulses for each azimuth.

Experiment and Simulation of Acoustic Detection for the Substitute for Sunken Hazardous and Noxious Substances Using the High Frequency Active Sonar (고주파 능동소나를 이용한 저층 침적 위험유해물질 대체물질 음향 탐지 실험 및 모의)

  • Han, Dong-Gyun;Seo, Him Chan;Choi, Jee Woong;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.459-466
    • /
    • 2018
  • Hazardous and Noxious Substances (HNS) are defined as substances that are likely to create a significant impact on human health and marine ecosystem when they are released into the marine environment. Recently, as the volume of HNS transported by ships increases, the rate of leakage accidents also increases. Therefore, research should be conducted to control and monitor sunken materials from the viewpoint of technology development for hazardous material leakage accident response. In this paper, acoustic detection experiments were carried out using HNS substitute materials in order to confirm the possibility of acoustic detection of sunken HNS on the sediment. The castor oil, which has a similar acoustic impedance with chloroform, is used as a substitute. 200 kHz high frequency signals were used to discriminate the reflected signals and measure reflection loss from the interface between water and castor oil. The reflection loss measured is in good agreement with the modeling results, showing a possibility of acoustic detection for sunken HNS.