• 제목/요약/키워드: activation energy($E_a$)

검색결과 490건 처리시간 0.024초

Characterization of RF Sputter-deposited Sodium Phosphorous Oxynitride Thin Films as a Solid-state Sodium-ion Conductor

  • Chun, Sang-Eun
    • 한국표면공학회지
    • /
    • 제50권4호
    • /
    • pp.237-243
    • /
    • 2017
  • We demonstrated the thin film deposition of sodium phosphorous oxynitride (NaPON) via RF magnetron sputtering of $Na_3PO_4$, as a solid-state Na-ion conductor similar to lithium phosphorous oxynitride (LiPON), which is a commonly used solid electrolyte. The deposited NaPON thin film was characterized by scanning electron microscopy, X-ray diffractometry, and electrochemical impedance spectroscopy, to investigate the feasibility of the solid-state electrolyte in several different cell configurations. The key properties of a solidstate electrolyte, i.e., ionic conductivity and activation energy, were estimated from the complex non-linear least square fitting of the measured impedance spectra at various temperatures in the range of $27-90^{\circ}C$. The ionic conductivity of the NaPON film was measured to be $8.73{\times}10^{-6}S\;cm^{-1}$ at $27^{\circ}C$, which was comparable to that of the LiPON film. The activation energy was estimated to be 0.164 eV, which was lower than that of the LiPON film (0.672 eV). The obtained values encourage the use of a NaPON thin film in the future as a reasonable solid-state electrolyte.

Ab initio Studies on the Hetero Diels-Alder Cycloaddition

  • 이본수;김찬경;최정욱;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권9호
    • /
    • pp.849-853
    • /
    • 1996
  • Hetero Dieis-Alder reactions containing phosphorus atom at various positions of diene and dienophile as well as standard Dieis-Alder reaction between ethylene and cis-l,3-butadiene have been studied using ab initio method. Activation energy showed a good linear relationship with the FMO energy gap between diene and dienophile, which can be normally used to explain Dieis-Alder reactivity. Since π-bond cleavage and σ-bonds formation occur concertedly at the TS, geometrical distortion of diene and dienophile from the reactant to the transition state is the source of barrier. Based on the linear correlations between activation barrier and deformation energy, and between deformation energy and π-bond order change, it was concluded that the activation barrier arises mainly from the breakage of π-bonds in diene and dienophile. Stabilization due to favorable orbital interaction is relatively small. The geometrical distortions raise MO levels of the TS, which is the origin of the activation energy. The lower barrier for the reactions of phosphorus containing dienophile (reactions C, D, and E) can be explained by the electronegativity effect of the phosphorus atom.

Thickness Dependent Temperature Accelerated Dielectric Break-down Strength of On-wafer Low Dielectric Constant Polymer Films

  • Kim, H. K.;Lee, S. W.;F. G. Shi;B. Zhao
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권6호
    • /
    • pp.281-286
    • /
    • 2002
  • The temperature accelerated dielectric breakdown strength of on-wafer low-k dielectric polymer films with thicknesses ranging from 94 nm to 1141 nm is investigated by using the current-voltage characteristic measurements with MIS structures. The temperature dependence of dielectric strength is demonstrated to be Arrhenious for all thicknesses. However, the activation energy is found to be strongly thickness dependent. It follows an exponential relationship rather than being a single value, i.e., the activation energy increase significantly as film thickness increases for the thickness below 500 nm, but it is almost constant for the thickness above 500 nm. This relationship suggests that the change of the activation energy corresponding to different film thickness is closely related to the temperature dependence of the electron trapping/detrapping process in polymer thin films, and is determined by both the trapping rate and the detrapping rate. Thinner films need less energy to form a conduction path compared to thicker films. Hence, it leads to smaller activation energy in thinner films, and the activation energy increases with the increase in film thickness. However, a nearly constant value of the activation energy is achieved above a certain range of film thickness, indicating that the trapping rate and detrapping rate is almost equal and eventually the activation energy approaches the value of bulk material.

아세토페논이 양모의 염색속도에 미치는 영향 (Effect of Acetophenone on the Rate of Wool Dyeing)

  • 도성국
    • 한국의류산업학회지
    • /
    • 제10권3호
    • /
    • pp.394-398
    • /
    • 2008
  • One of barely water soluble ketones, acetophenone (AP) was dissolved in methanol and then was mixed with aqueous solution of C. I. Red Acid 114. In order to find out the role of AP in the dyeing process the rate constants and the activation parameters were calculated. The rate for the dyeing with AP was faster than that without it. Because of the reduced temperature dependence by AP the activation energy ($E_a$) for the dyeing with AP was smaller than that without it. With increasing temperature the activation enthalpy (${\Delta}H^*$), the activation entropy (${\Delta}S^*$), and the activation free energy ($G^*$) decreased, which was more noticeable in dyeing with AP. The rate constants and the activation parameters agreed well with the results from the previous reports that the ability of AP to increase disaggregation of dye molecules, loosening the wool fiber, and wickabilty of dyeing solution made it possible to dye wool fiber at low temperature.

Isotherm for $Ni-O_2$ Adsorption System

  • Kyoung-Hee Ham;Woon-Sun Ahn
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권3호
    • /
    • pp.231-235
    • /
    • 1990
  • The activation energy of dissociative adsorption of oxygen on polycrystalline nickel surface is calculated from adsorption isotherms obtained using X-ray photoelectron spectroscopy. Negative value of this activation energy (-5.9 kJ/mol) indicates that the adsorption takes place through an undissociated precursor state. An adsorption energy for this precursor state is calculated assuming the precursor state as a moleculary physisorbed state ($E_{ad}$ = -7.9 kJ/mol). Finally, an adsorption isotherm equation is derived as a function of the gas exposure, which agrees with the experimental isotherms reasonably good.

Activation analysis of targets and lead in a lead slowing down spectrometer system

  • Lee, Yongdeok;Kim, Jeong Dong;Ahn, Seong Kyu;Park, Chang Je
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.182-189
    • /
    • 2018
  • A neutron generation system was developed to induce fissile fission in a lead slowing down spectrometer (LSDS) system. The source neutron is one of the key factors for LSDS system work. The LSDS was developed to quantify the isotopic contents of fissile materials in spent nuclear fuel and recycled fuel. The source neutron is produced at a multilayered target by the (e,${\gamma}$)(${\gamma}$,n) reaction and slowed down at the lead medium. Activation analysis of the target materials is necessary to estimate the lifetime, durability, and safety of the target system. The CINDER90 code was used for the activation analysis, and it can involve three-dimensional geometry, position dependent neutron flux, and multigroup cross-section libraries. Several sensitivity calculations for a metal target with different geometries, materials, and coolants were done to achieve a high neutron generation rate and a low activation characteristic. Based on the results of the activation analysis, tantalum was chosen as a target material due to its better activation characteristics, and helium gas was suggested as a coolant. In addition, activation in a lead medium was performed. After a distance of 55 cm from the lead surface to the neutron incidence, the neutron intensity dramatically decreased; this result indicates very low activation.

양이온 열잠재성 개시제에 의한 에폭시/페놀 수지 브랜드 시스템의 경화 동력학.열안정성 및 유변학적 특성 (Cure Kinetics, Thermal Stabilities and Rheological Properties of Epoxy/phenol Resin Blend System Initiated by Cationic Thermal Latent Catalyst)

  • 박수진;서민강;이재락
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.135-142
    • /
    • 1999
  • 열잠재성 개시제인 N-benzylpyrazinium hexafluoroantimonate (BPH)를 에폭시 수지에 페놀-노볼락 수지의 혼합비가 각각 0, 5, 10, 20 그리고 40 wt.%로 구성된 혼합물에 1 wt.% 첨가 시킨 후 혼합 조성비에 따른 경화 동력학, 열안정성 그리고 유변학적 특성에 관하여 연구하였다. 열잠재특성은 동적 DSC를 이용하여 반응 온도에 대한 전화량을 구하여 측정하였다. 본 양이온 BPH 시스템은 에폭시-페놀 경화 시스템의 열잠재성 개시제로서 유용하다는 것이 입증되었다. 페놀-노볼락 수지의 농도 증가는 브랜드 시스템의 잠재온도 감소와 경화 활성화 에너지($E_a$) 증가를 나타내었다. 브랜드 시스템의 열안정성과 유변학적 특성은 TGA와 rheometer를 사용한 등온 실험을 통하여 각각 조사하였다. 결과로서, TGA를 이용하여 구한 열안정성과 분해 활성화 에너지($E_t$) 그리고 rheometer에 의한 gel time과 가교 활성화 에너지($E_c$)는 페놀-노볼락 수지가 20~40 wt.% 조성범위에서 혼합될 때 증가하였다. 이는 페놀 수지내의 수산기 그룹, 에폭시 수지내의 에폭사이드환 그리고 BPH간의 3차원 가교 반응에 기인한다.

  • PDF

Ti의 ${\Omega}$법을 이용한 고온 크리프 거동해석 (Creep Behavior Analysis of Pure Ti by Omega Method)

  • 조진화;이헌식;정순억
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.388-393
    • /
    • 2004
  • Creep behavior of Ti had been studied in a stress from 9.8 to 29.4 MPa and temperature rang from 873K to 973K with a special reference to tertiary creep. It was found that stress exponent of Ti was larger than that of the general pure metal and the compound metal. The relationship between true strain and strain rate in tertiary creep was appeared as the equation, $ln{\dot{e}}$ = $ln{\dot{e}}_{0}$ + ${\Omega}$ e Also, Apparent activation energy of was appeared as 274.92kJ/mol by using the equation ${\dot{\varepsilon}}_{0}$ = A ${\sigma }_{0}^{\ast_0}$ exp$(-Q_{0}/RT)$

  • PDF

GaAs Metal-Semiconductor Field-Effect Transistor에서 표면 결함이 소자의 전달컨덕턴스 분산 및 게이트 표면 누설 전류에 미치는 영향 (Effects of Surface States on the Transconductance Dispersion and Gate Leakage Current in GaAs Metal - Semiconductor Field-Effect Transistor)

  • 최경진;이종람
    • 대한전자공학회논문지SD
    • /
    • 제38권10호
    • /
    • pp.678-686
    • /
    • 2001
  • CaAs metal semiconductor field effect transistor (MESFET) 소자의 전달컨덕턴스 분산 (transconductance dispersion) 현상과 게이트 누설 전류의 원인을 capacitance deep level transient spectroscopy (DLTS) 측정을 이용하여 해석하였다. DLTS 스펙트럼에서는 활성화 에너지가 각각 0.65×0.07 eV와 0.88 × 0.04 eV인 두개의 표면 결함과 0.84 × 0.01 eV의 활성화 에너지를 갖는 EL2를 관찰하였다. 전달컨덕턴스 분산 측정 결과, 전달컨덕턴스는 5.5 Hz ∼ 300 Hz의 주파수 영역에서 감소하였다. 전달컨덕턴스 분산을 온도의 함수로 측정한 결과, 온도가 증가할수록 전이 주파수는 증가하였고 전이 주파수의 온도 의존성으로부터 0.66 ∼ 0.02 eV의 활성화 에너지를 구할 수 있었다. 게이트 누설 전류 측정에서는 0.15 V 이하의 게이트 전압에서 순 방향과 역 방향 게이트 전압이 일치하는 오믹 전류-전압 특성을 나타내었고 게이트 누설 전류의 온도 의존성으로부터 구한 활성화 에너지는 0.63 ∼ 0.01 eV로 계산되었다. 서로 다른 방법으로 구한 활성화 에너지의 비교로부터 표면 결함 H1이 주파수에 따라서 감소하는 전달컨덕턴스 분산 및 게이트 누설 전류의 원인임을 알 수 있었다.

  • PDF

인산형 연료전지용 SiC-SiC Whisker 전해질 매트릭스의 특성 (Characterization of SiC-SiC Whisker Matrix Retaining Electrolyte in Phosphoric Acid Fuel Cell)

  • 윤기현;이현임;이근행;김창수
    • 한국세라믹학회지
    • /
    • 제29권8호
    • /
    • pp.587-592
    • /
    • 1992
  • Sheets of SiC-SiC whisker maxed matrix were prepared from the mixed slurry of SiC whisker and SiC matrix by the rolling method. With the increase of SiC whisker, the pore size, the porosity and the phosphoric acid absorbency of the matrix were increased, while the bubble pressure was decreased. The activation energy for the transfer of H+ ion was decreased with the increase of mixing ratio of SiC whisker to the SiC matrix from the measurement of hydrogen ion conductivity. The activation energy was evaluated as 0.25 eV when the mixing ratio of SiC whisker to the SiC matrix was 1 : 2 and the activation energy was 0.16 eV for the 2 : 1 matrix. It means that SiC whisker matrix contributes to attain a better microstructure for the diffusion of hydrogen ion. From the measurement of single cell performance of matrix with various mixing ratio, it is concluded that if SiC-SiC whisker maxed matrix has a sufficient bubble pressure to prevent the crossover of H2 gas, the current density of a fuel cell is increased with the increase of acid absorbency of the matrix. Current density was improved from 140 mA/$\textrm{cm}^2$ for 0.25 mm thickness of matrix to 170 mA/$\textrm{cm}^2$ for the 0.20 mm one at 700 mV.

  • PDF