• Title/Summary/Keyword: activation energ

Search Result 2, Processing Time 0.018 seconds

Bacillus stearothermophilus 에서 부분 정제한 Cytosine Deaminase 의 특성

  • 장영채;이경형;김성영;조윤래;김종규
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.305-309
    • /
    • 1992
  • Cytosine deaminase (EC 3.5.4.1) from BaciNus stc~urorhermophilus was partially purified 7.2-fold with an overall yield of 52.7%. The partially purified enzyme deiiminated cytosine only.but not 5-methylcytosine and 5-fluorocytosine. The apparent Michaclis constant. Km valuefor cytosine was 5.9 mM. The enzyme was relatively stable in the range of pH 4.0 to 7.0.furthermore extremely thermo-stable : more than 75'X) of the activity was remained afterheating at 80$^{\circ}$C for I0 min at pH 6.5. The enzyme had a pH optimum at around pH7.0 to 7.5. and temperature optimum at 35 to 31$^{\circ}$C. And the activation energ (En value)determined from an Arrhenius plot was 26 Kcal/mol. The enzyme activity was stronglyinhibited by heavy metal ions such as Cd", Hg". Cut' at 1 mM, anJ by o-phenanthroline,and p-chloromcrcuribcnzoate at I mM. But the enrymc activity was activatetl increased byGMP, and CMP at 1 mM.ased by GMP, and CMP at 1 mM.

  • PDF

Thermal Stability of the Major Color Component, Cyanidin 3-glucoside, from a Korean Pigmented Rice Variety in Aqueous Solution (한국산 유색미의 주요성분인 Cyanidin 3-glucoside의 수용액에서의 열안정성)

  • Jo, Man-Ho;Yoon, Hye-Hyun;Hahn, Tae-Ryong
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.245-248
    • /
    • 1996
  • Thermal stability of the major color component, cyanidin 3-glucoside, isolated from Korean pigmented rice (Oryza sativa var. Suwon 415) were investigated to explore possible application of value-added natural colors as food additives. The anthocyanin showed red and blue color with maximum absorption peaks at 511 nm and 572 nm in acidic (pH 2.0) and alkaline (pH 9.0) buffer solutions, respectively, and the thermal degradation reactions were carried out with different temperature ranges at $50{\sim}95^{\circ}C$. Degree of degradation was determined with UV/Vis spectra which indicate characteristic absorption patterns with sharp isosbestic points at 350 nm (pH 2.0), and 275, 310, and 405 nm (pH 9.0). Thus the reaction follows simple first-order kinetics. The anthocyanin was very stable against heat at acidic pH and relatively stable at alkaline pH with half-life values of 50.3 hr and 0.6 hr at $70^{\circ}C$, respectively. The activation energies and Arrhenius frequency factors of the pigment were 26.9 kcal $mol^{-1}\;and\;6.0{\times}10^{11}\;s^{-1}$, at pH 2.0, and 15.2 kcal $mol^{-1}\;and\;1.4{\times}10^{6}\;s^{-1}$, pH 9.0, and respectively.

  • PDF