• Title/Summary/Keyword: activated carbons

Search Result 292, Processing Time 0.034 seconds

Characterization of AC/TiO2 Composite Prepared with Pitch Binder and Their Photocatalytic Activity

  • Chen, Ming-Liang;Bae, Jang-Soon;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1423-1428
    • /
    • 2006
  • In this study, we have prepared pitch binded AC (activated carbon)/$AC/TiO_2$ composites photocatalysts through carbon tetrachloride solvent method. The developed samples were characterized with surface properties, structural crystallinity between AC and $AC/TiO_2$, elemental identification and photocatalytic activity. The results of the textural surface properties demonstrate that there are slight increases in the BET surface area and adsorbed volume from adsorption isotherm of composite samples with increasing of the amount of AC. The SEM results present to the characterization of porous texture on the pitch/AC/$AC/TiO_2$ composites and homogenous compositions in the particle for all the materials used. From XRD data, a weak and broad carbon peak of graphene remained rutile peaks kept with anatase structure were observed in the X-ray diffraction patterns for the pitch/AC/$AC/TiO_2$ composites. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of the pitch/AC/$AC/TiO_2$ composites between relative concentration ($c/c_o$) of MB and UV irradiation time could be attributed to the both effects between photocatalysis of the supported $AC/TiO_2$ and adsorptivity of the two kinds of carbons.

Investigation of gene encoding catechol 1,2-dioxygenase from Phenol-degrading, Rhodococcus sp. EL-GT

  • Lee, Hui-Jeong;Han, Chang-Min;Jo, Sun-Ja;Park, Geun-Tae;Park, Jae-Rim;Lee, Sang-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.549-551
    • /
    • 2001
  • The heavy use of petroleum products in modern livings has brought ubiquitous environmental contaminants of aromatic compounds, which persist in aquatic and geo-environment without the substantial degradation. The persistence and accumulation of the aromatic compounds, which include xylene, phenol, toluene, phthalate, and so on are known to cause serious problems in our environments. Some of soil and aquatic microorganisms facilitate their growth by degrading aromatic compounds and utilizing degrading products as growth substrates, the biodegradation helps the reentry of carbons of aromatic compounds, preventing their accumulation in our environments. The metabolic studies on the degradation of aromatic compounds by microoganisms were extensively carried out along with their genetic studies. A Rhodococcus sp. EL-GT isolated in activated sludges has shown the excellent ability to grow on phenol as a sole carbon source. In the present study investigated a gene encoding phenol-degrading enzymes from a Rhodococcus sp. EL-GT.

  • PDF

Removal of Fine Suspended Solids and Soluble Heavy Metals in H Mine Drainage using Settling and Filtering : Field Application (침전 및 여과를 통한 H 광산배수 내 미세부유물질 및 용해성 중금속의 제거 : 현장실험을 중심으로)

  • Oh, Minah;Kim, WonKi;Oh, Seungjin;Kim, DukMin;Lee, SangHoon;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.54-62
    • /
    • 2013
  • Fine suspended solids and soluble heavy metals generated from mine drainage could destroy environment as the aesthetic landscapes, and depreciate water quality. Therefore, this research is focused on process development applied the actual field for controlling fine suspended solids and heavy metals, and so that bench-scale tests were performed for field application based on advanced researches. The field of mine drainage in this research was in H mine located Taebaek-si, Gangwon-do. The inclination plates were mounted 2 kinds of arrangement (octagon and radial types) in circle type settling basin. The inclination plates could be helped to settle of suspended solids; decreased 34% of suspended solids and 50% of turbidity in effluent. Radial type of inclination plates showed the results that is more efficient to settle of suspended solids (average to 3.45 mg/L) compared to octagon type. In the experiments to decrease retention time of mine drainage in settling basin from 6 hrs to 1.5 hrs, suspended solid concentration was exceeded to 30 mg/L as the standard for suspended solid at 10 days after the operation under tha retention time of 3hrs and 1.5hrs. In the tests for filtration, granular activated carbons were indicated the better effective to filtering and absorption of fine suspended solid and soluble heavy metals than anthracite.

Study on desorption characteristics by mixed resins of active carbons and ion exchange resins for perchlorate ion (이온교환수지와 활성탄의 혼합수지를 이용한 과염소산 이온의 탈착 특성 연구)

  • Kim, Young-Eun;Jeong, Yu-Dong;Kim, Sun Hwan;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Perchlorate ($ClO{_4}^-$) is the material that is used as propellants of rockets and material of explosive as a form of ammonium perchlorate salts. Ammonium perchlorate solution of high concentration is recovered from expired rocket through demilitarization process by the water-jet method. If people take perchlorate in food and water, it interferes with adsorption of iodide which is the substance needed to synthesize thyroid hormone in the thyroid gland. It has an bad influence upon disturbing pregnancy and synthesis of growth hormone. So the effective method is necessary to remove perchlorate anion in water. By considering economic aspect, we studied effective desorption (regeneration) of perchlorate anion from adsorbent with studies on removal and adsorption of perchlorate anion. Desorption experiment was conducted as batch type. Depending on various conditions (concentration, pH, cation anion form) elution, we evaluated amount, efficiency of desorption(amount of adsorption/desorption ${\times}$ 100). Also, research confirmed the efficiency of mixed resins between anion exchange resin and activated carbon and expected synergic effect from advantages of both adsorbents.

Development and Evaluation of Impregnated Carbon Systems Against Iodine Vapours

  • Srivastava, Avanish Kumar;Saxena, Amit;Singh, Beer;Srivas, Suresh Kumar
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.274-279
    • /
    • 2007
  • In order to understand the breakthrough behaviour of iodine vapours on impregnated carbon systems, an active carbon, 80 CTC grade, $12{\times}30$ BSS particle size and $1104\;m^2/g$ surface area, was impregnated with metal salts such Cu, Cr, Ag, Mo and Zn, and an organic compound Triethylene diamine (TEDA) to prepare different carbon systems such as whetlerite, whetlerite/TEDA, whetlerite/KI/KOH and ASZMT. The prepared adsorbents along with active carbon were characterized for surface area and pore volume by $N_2$ adsorption at liquid nitrogen temperature. These carbon systems were compared for their CT (concentration X time) values at 12.73 to 53.05 cm/sec space velocities and 2 to 5 cm carbon column bed heights. The carbon column of 5.0 cm bed height and 1.0 cm diameter was found to be providing protection against iodine vapours up to 5.5 h at 3.712 mg/L iodine vapour concentration and 12.73 cm/sec space velocity. The study clearly indicated the adsorption capacities of carbon systems to be directly proportional to their surface area values. Dead layer with all the prepared carbon systems was found to be less than 2.0 cm indicating it to be minimum bed height to have protection against $I_2$ vapours. Effect of carbon bed height and flow rate was also studied. The active carbon showed maximum protection at all bed heights and flow rates in comparison to all other impregnated carbon systems, showing that only physical adsorption is responsible for the removal of iodine vapours.

Treatment of Contaminated Groundwater Containing Petroleum and Suspended Solids Using DAF and Mixed Coagulation Processes (DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.25-32
    • /
    • 2010
  • Contamination of soil and groundwater by the compounds of hydrocarbon petroleum has been widely accepted as the main cause that harms the environments and health. To remove those pollutants, absorbing clothes, activated carbons, or oil-water separation devices with the gravity method are employed for treatment. However, those materials and devices cannot remove the emulsion pollutants despite of their efficiency for removing free products. Therefore, we investigated the problems which occur during the groundwater treatment for the highly concentrated suspended solid particles, which can be resulted from excavation, and to propose methods to remove TPH(Total Petroleum Hydrocarbon). After coagulation experiment with high molecular polymers, the concentration of SS(Suspended Solids) and COD(Chemical Oxygen Demand) turned to satisfy the groundwater quality criteria within 5 minutes while the concentration of TPH failed to meet the water quality standard of effluent. Consequently, the water quality criteria for effluent could not be met by single DAF(Dissolved Air Flotation) process. However all water quality criteria could be satisfied after 20 minutes when coagulation reactions are carried out simultaneously in the DAF reactor.

Column filled with Fe-GAC and GAC to remove both As(V) and Fe(III) (비소와 철 동시제거를 위한 Fe-GAC와 GAC로 충진된 컬럼)

  • Lee, Yong-Soo;Do, Si-Hyun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.87-97
    • /
    • 2016
  • First of all, Fe or/and Mn immobilized granular activated carbons (Fe-GAC, Mn-GAC, (Fe, Mn)-GAC) were synthesized and tested to remove arsenate (As(V)). The results in batch test indicated that Fe-GAC removed As(V) effectively, even though the surface area of Fe-GAC was reduced largely. Moreover, adsorption isotherm test indicated that the experimental data fit well with Langmuir model and the maximum adsorption capacity ($q_{max}$) of Fe-GAC for As(V) was $3.49mg\;g^{-1}$, which was higher than GAC ($2.24mg\;g^{-1}$). In column test, the simulated water, which consisted of As(V), Fe(III), Mn(II) and Ca(II) in tap water, was used. Fe-GAC column with 1 hr of pre-washing time treated As(V) effectively while GAC column removed Fe(III) better than Fe-GAC column. Moreover, the increasing pre-washing time from 1 to 9 hour in Fe-GAC column enhanced Fe(III) removal with little negative impact of As(V) removal. Mostly, the column filled with Fe-GAC and GAC (i.e. the mass ratio of Fe-GAC:GAC = 2:8) showed the higher treatability of both As(V) and Fe(III), even it operated with 1 hr pre-washing time.

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Preparation and Characterization of Self-assembled Glycol Chitosan Hydrogels Containing Palmityl-acylated Exendin-4 for Extended Hypoglycemic Action

  • Lee, Ju-Ho;Lee, Chang-Kyu;Bae, Sung-Ho;Yoon, Jeong-Hyun;Choi, Eun-Joo;Oh, Kyung-Taek;Lee, Eun-Seong;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Injectable chitosan hydrogels have attracted great potential due to sustained-release property and safety. Here, palmityl-acylated glycol chitosan (Pal-GC) was used to generate physically cross-linked hydrogels by virtue of hydrophobic attraction of linear fatty carbons. Glycol chitosan was chemically modified with N-hydroxysuccinimide-activated palmitic acid in dimethylsulfoxide (DMSO) containing dimethylaminopyridine. Through a series of preparation steps of (i) dialysis with DMSO, (ii) addition of palmityl-acylated exendin-4 (Ex4-C16), and (iii) dialysis with water, Pal-GC was self-assembled to form physically cross-linked hydrogels entrapped with Ex4-C16. The Pal-GC derivative was analyzed by using 1H NMR, and the surface morphology of Pal-GC hydrogels formed was examined by scanning electron microscopy. Also, the hypoglycemic effect induced by Pal-GC hydrogels containing Ex4-C16 (250 nmol/kg) was evaluated in non-fasted type 2 diabetic db/db mice and compared with GC hydrogels containing native Ex4 at the same dose. Results showed that palmityl group was successfully conjugated with the amines of glycol chitosan, and that Pal-GC efficiently generated the hydrogels formation. Moreover, Pal-GC hydrogels containing Ex4-C16 was found to greatly prolong the hypoglycemia duration (~ 4 days). This was due to the dual-functions of the palmityl groups present in both GC and exendin-4 such as hydrophobic attraction and plasma albumin-binding. We consider this new type of self-assembled GC hydrogels loaded with Ex4-C16 would be a promising long-acting sustained-release system with anti-diabetic property.

Electrochemical double layer capacitors with PEO and Sri Lankan natural graphite

  • Jayamaha, Bandara;Dissanayake, Malavi A.K.L.;Vignarooban, Kandasamy;Vidanapathirana, Kamal P.;Perera, Kumudu S.
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • Electrochemical double layer capacitors (EDLCs) have received a tremendous interest due to their suitability for diverse applications. They have been fabricated using different carbon based electrodes including activated carbons, single walled/multi walled carbon nano tubes. But, graphite which is one of the natural resources in Sri Lanka has not been given a considerable attention towards using for EDLCs though it is a famous carbon material. On the other hand, EDLCs are well reported with various liquid electrolytes which are associated with numerous drawbacks. Gel polymer electrolytes (GPE) are well known alternative for liquid electrolytes. In this paper, it is reported about an EDLC fabricated with a nano composite polyethylene oxide based GPE and two Sri Lankan graphite based electrodes. The composition of the GPE was [{(10PEO: $NaClO_4$) molar ratio}: 75wt.% PC] : 5 wt.% $TiO_2$. GPE was prepared using the solvent casting method. Two graphite electrodes were prepared by mixing 85% graphite and 15% polyvinylidenefluoride (PVdF) in acetone and casting n fluorine doped tin oxide glass plates. GPE film was sandwiched in between the two graphite electrodes. A non faradaic charge discharge mechanism was observed from the Cyclic Voltammetry study. GPE was stable in the potential windows from (-0.8 V-0.8 V) to (-1.5 V-1.5 V). By increasing the width of the potential window, single electrode specific capacity increased. Impedance plots confirmed the capacitive behavior at low frequency region. Galvanostatic charge discharge test yielded an average discharge capacity of $0.60Fg^{-1}$.