• Title/Summary/Keyword: activated carbons

Search Result 293, Processing Time 0.024 seconds

Characterization and Fabrication of Chemically Activated Carbon Fibers with Various Drying Temperatures using OXI-PAN Fibers

  • Moon, Sook-Young;Lee, Byung-Ha;Lim, Yun-Soo
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 2007
  • Oxidized PAN (OXI-PAN) fibers were used for the precursors of activated carbon fiber in study. How drying temperature affected the properties of carbon fibers on activating process of carbon fibers was investigated. The specific surface areas of activated carbon fibers have been determined on a series of chemically activated carbons with KOH and NaOH. The experimental data showed variations in specific surface area, iodine and silver adsorptions by the activated carbon fibers. The amount of iodine adsorption increases with increasing specific surface areas in both activation methods. This was because the ionic radius of iodine was smaller than the interior micropore size of activated carbon fibers. Silver adsorbed well in NaOH activated carbon fibers rather than KOH activated carbon fibers in this study.

H2S Adsorption Characteristics of KOH Impregnated Activated Carbons (KOH 첨착 활성탄에서 황화수소의 흡착 특성)

  • Choi, Do-Young;Jang, Seong-Cheol;Gong, Gyeong-Tack;Ahn, Byoung-Sung;Choi, Dae-Ki
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.280-285
    • /
    • 2006
  • Adsorption characteristics of $H_{2}S$ on KOH impregnated activated carbon were evaluated using dynamic adsorption method in a fixed bed. The pore properties, including BET's specific surface area, pore volume, pore size distribution, and mean pore diameter of these KOH impregnated activated carbons, were characterized from $N_{2}$ adsorption/desorption isotherms. Adsorption equilibrium data were correlated with Langmuir and Freundlich isotherms. The adsorption of $H_{2}S$ onto the KOH impregnated activated carbon is better fitted by the Langmuir isotherm. An increase in the content of oxygen affects the performance of KOH impregnated activated carbon to the greatest extent.

Performance of Electric Double Layers Capacitor Using Activated Carbon Materials from Rice Husk as Electrodes

  • Nguyen, Tuan Dung;Ryu, Jae Kyung;Bramhe, Sachin N.;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.643-648
    • /
    • 2013
  • Activated carbon (AC) was synthesized from rice husks using the chemical activation method with KOH, NaOH, a combination of (NaOH + $Na_2CO_3$), and a combination of (KOH + $K_2CO_3$) as the chemical activating reagents. The activated carbon with the highest surface area (around $2000m^2/g$) and high porosity, which allows the absorption of a large number of ions, was applied as electrode material in electric double layer capacitors (EDLCs). The AC for EDLC electrodes is required to have a high surface area and an optimal pore size distribution; these are important to attain high specific capacitance of the EDLC electrodes. The electrodes were fabricated by compounding the rice husk activated carbons with super-P and mixed with polyvinylidene difluoride (PVDF) at a weight ratio of 83:10:7. AC electrodes and nickel foams were assembled with potassium hydroxide (KOH) solution as the electrolyte. Electrochemical measurements were carried out with a three electrode cell using 6 M KOH as electrolyte and Hg/HgO as the reference electrode. The specific capacitance strongly depends on the pore structure; the highest specific capacitance was 179 F/g, obtained for the AC with the highest specific surface area. Additionally, different activation times, levels of heating, and chemical reagents were used to compare and determine the optimal parameters for obtaining high surface area of the activated carbon.

Removal Characteristics of Chlorination Disinfection By-Products by Activated Carbons (활성탄 공정에서의 염소 소독부산물 제거특성)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Bae, Seog-Moon;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.762-770
    • /
    • 2005
  • Adsorption and biodegradation performance of chlorinated by-products such as trihalomethanes(THMs) and haloacetic acids(HAA5) on granular activated carbon were evaluated in this study. The coconut-based activated carbon was found more effective than others in adsorption of THMs due to larger pore volume of less than $20{\AA}$. The wood-based activated carbon was less effective than coconut- and coal-based activated carbon in adsorption nevertheless having larger pore volume and specific surface area than others. The maximum adsorption capacity(X/M) of coconut-based carbon for THMS was 1.1-1.5 times larger than coal based carbon and 14.1-31.4 times larger than wood based activated carbons. Activated carbon usage rate(CUR) of coconut-, coal- and wood-based activated carbons for chloroform were 9.4, 11.2 and 38 g/day respectively. In the evaluation of adsorption isotherm of THM species for coconut-, coal- and wood-based activated carbons, k value of chloroform was the lowest in the THM species, It menas that chloroform is difficult to remove by activated carbon adsorption. and BDCM, CDBM, bromoform are in the succeeding order of adsorption. In the evaluation of biodegradation rate, mean biodegradation rate was chloroform 7%, BDCM 5%, CDBM 4% and bromoform 3%, respectively THMs are difficult materials to be biodegraded. In the evaluation of characteristics of adsorption and biodegradation for HAA5 species, HAA5 species appear to be removed effectively by activated carbon. Most of the HAA5 are adsorbed at the beginning of operation periods and HAA5 except TCAA were almost biodegraded from bed volume of 2,000 and more than 90 percent of biodegradation of TCAA was started from bed volume around 4,000 and after that biodegradation rate was increased with increasing bed volume.

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

Removal Characteristics of Nitrogenous Organic Chlorination Disinfection By-Products by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성)

  • Seo, In-Suk;Son, Hee-Jong;Choi, Young-Ik;Ahn, Wook-Sung;Park, Chung-Kil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.184-191
    • /
    • 2007
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested for an adsorption and biodegradation performances of nitrogenous chlorinated by-products such as chloropicrin, DCAN, DBAN and TCAN. In early stage of operations, an adsorption performance was a main mechanism for removal of nitrogenous chlorinated by-products, however as increasing populations of attached bacteria, the bacteria played a major role in removing nitrogenous chlorinated by-products in the activated carbon and anthracite biofilter. It was also investigated that the compounds were readily subjected to biodegrade. Whilst the coal- and coconut-based activated carbons were found most effective in adsorption of the compounds, the anthracite was worst in adsorption of the compounds. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria were inhibited for removal of the compounds at temperatures below $10^{\circ}C$. The attached bacteria were more active at higher water temperatures$(20^{\circ}C\;<)$ but less active at love. water temperature$(10^{\circ}C\;>)$. The removal efficiencies of the compounds obtained using coal-, coconut- and wood-based activated carbons and anthracite were directly related to the water temperatures. In particular, water temperature was the most important factor for removal of the compounds in the anthracite biofilter because the removal of the compounds depended mainly on biodegradation. Therefore, the main removal mechanism of the compounds the main mechanism on the removal of the compounds using activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that using coal-based activated carbon is the best for removal of nitrogenous chlorinated by-products in the water treatment.

Effects of Activated Carbon Types and Service Life on Removal of Odorous Compounds: Geosmin and 2-MIB (활성탄 재질과 사용연수에 따른 Geosmin과 MIB 흡착특성)

  • Lee, Hwa-Ja;Son, Hee-Jong;Lee, Chul-Woo;Bae, Sang-Dae;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.404-411
    • /
    • 2007
  • Adsorption performance of odorous compounds such as geosmin and 2-MIB on granular activated carbon were evaluated in this study. The coal-based activated carbon was found more effective than other carbons in adsorption of geosmin and 2-MIB. The wood-based virgin activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacity(X/M) of coal-based activated carbon for geosmin and 2-MIB was $1.2\sim1.9$ and $2.1\sim2.6$ times larger than coconut- and wood-based virgin activated carbon, respectively. Carbon usage rate (CUR) of coal-, coconut- and wood-based virgin activated carbons for geosmin and 2-MIB were 1.72 and 1.44 g/day, 1.72 and 2.05 g/day and 2.12 and 1.90 g/day, respectively. In the evaluation of adsorption isotherm of geosmin and 2-MIB for coal-, coconut- and wood-based virgin activated carbons, k value of 2-MIB was lower than geosmin, It menas 2-MIB is more difficult to remove by activated carbon adsorption than geosmin. The relationship of max. adsorption versus total pore volume of coconut- and wood-based virgin and used activated carbon for geosmin and 2-MIB were $y=264,459\times-79,047(R^2=0.95)$, $y=319,650\times-101,762(R^2=0.93)$.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

Impact of Air Convection on H3PO4-Activated Biomass for Sequestration of Cu (II) and Cd (II) Ions

  • Girgis, Badie S.;Elkady, Ahmed A.;Attia, Amina A.;Fathy, Nady A.;Abdel Wahhab, M. A.
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.114-122
    • /
    • 2009
  • Crushed, depitted peach stones were impregnated activated with 50% $H_3PO_4$ followed by pyrolysis at $500^{\circ}C$. Two activated carbons were produced, one under its own evolved gases during pyrolysis, and the second conducted with air flow throughout the carbonization stage. Physicochemical properties were investigated by several procedures; carbon yield, ash content, elemental chemical analysis, TG/DTG and FTIR spectra. Porosity characteristics were determined by the conventional $N_2$ adsorption at 77 K, and data analyzed to get the major texture parameters of surface area and pore volume. Highly developed activated carbons were obtained, essentially microporous, with slight effect of air on the porous structure. Oxygen was observed to be markedly incorporated in the carbon matrix during the air treatment process. Cation exchange capacity towards Cu (II) and Cd (II) was tested in batch single ion experimental mode, which proved to be slow and a function of carbon dose, time and initial ion concentration. Copper was up taken more favorably than cadmium, under same conditions, and adsorption of both cations was remarkably enhanced as a consequence of the air treatment procedure. Sequestration of the metal ions was explained on basis of the combined effect of the oxygen functional groups and the phosphorous-containing compounds; both contributing to the total surface acidity character.

Supercapacitors using Pure Single-walled Carbon Nanotubes

  • Tanaike, Osamu;Futaba, Don N.;Hata, Kenji;Hatori, Hiroaki
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.90-93
    • /
    • 2009
  • The excellent and characteristic capacitor performance of pure single-walled carbon nanotubes (SWNTs), which differ from conventional activated carbon electrodes, is reported. SWNTs with little bundling showed higher specific capacitance than activated carbons. High operating voltage can be expected for pure SWNTs without metal contamination and graphene edge structure.