• Title/Summary/Keyword: activated carbon fibers (ACFs)

Search Result 64, Processing Time 0.025 seconds

Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.127-130
    • /
    • 2008
  • This study aims to find a correlation between XRD and Raman result of the activated carbon fibers as a function of its activation degrees. La of the isotropic carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well, and compared with Raman result. The La of the carbon fibers were measured to be 25.5 ${\AA}$ from Raman analysis and 23.6 ${\AA}$ from XRD analysis. La of the ACFs were 23.6 ${\AA}$ and 20.4 ${\AA}$, respectively, representing less ordered through activation process. It seems that the $I_D/I_G$ of Raman spectra were related to crystallite size(La). Raman spectroscopy has demonstrated its unique ability to detect structural changes during the activation of the fibers. There was good correlation between the La value obtained from Raman and XRD.

Preparation of Carbon Electrodes Using Activated Carbon Fibers and Their Performance Characterization for Capacitive Deionization Process (활성탄소섬유를 이용한 탄소전극의 제조 및 축전식 탈염공정에서의 성능평가)

  • Park, Cheol Oh;Oh, Ju Seok;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • In this study, the carbon electrodes using activated carbon fibers (ACFs) were prepared for the capacitive deionization process. The Polyvinylidene fluoride (PVDF) was used as the binder and the mixed ACFs with proper solvent was cast on the commercial graphite sheets to prepare the carbon electrodes. At this moment, the different particle sizes of ACFs were applied and the mixing ratio of solvent, PVDF and ACFs, 80 : 2 : 18 and 80 : 5 : 15, were used for the electrode preparation. Then their salt removal efficiencies were characterized under the various operating conditions, adsorption potential and time, desorption potential and time, concentration of feed NaCl solution and flow rate as well. Typically, the salt removal efficiency of 53.6% were obtained at the particle size below $32{\mu}m$, mixing ratio 80 : 2 : 18, adsorption 1.2 V and 3 min, desorption -0.1V and 1 min, and 15 mL/min flow rate of NaCl 100 mg/L.

Liquid Phase Adsorption of Activated Carbon Fibers (활성탄소섬유의 액상흡착)

  • Moon, Dong Cheul;Kim, Chang Soo;Park, Il Yeong;Kim, Mi Ran;Hong, Seung Soo;Lee, Kwang Ho;Lee, Chang Gi
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.573-583
    • /
    • 2000
  • Activated carbon fibers (ACFs) were prepared from various precursors of plantic, synthetic, and mixed fabrics of viscous rayon and cotton. Their adsorption performances of phenol and methylene blue in aqueous phase were evaluated through their adsorption isotherms, adsorption rates and breakthrough curves. The two adsorbates showed type I adsorption isotherm on ACFs. Adsorption rates to ACFs were 100 fold faster than to GAC. The effective diffusion coefficients of the adsorbates in ACFs were twenty fold greater than in GAC. The ACFs removed completely ten organic pollutants from a prepared water specimens through the 2nd column of a natural filtration method where 50 L of the water samples were treated.

  • PDF

Micropore Analysis and Adsorption Characteristics of Activated Carbon Fibers (활성탄소섬유의 미세기공 분석 및 흡착특성)

  • Moon, Dong-Cheul;Lee, Kwang-Ho;Kim, Chang-Soo;Kim, Do-Hyung;Kim, Mi-Ran;Shin, Chae-Ho;Park, II-Young;Nam, Seoung-Youl;Lee, Chang-Gi
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.89-95
    • /
    • 2000
  • Three grades of activated carbon fibers (ACFs) were prepared from various precursors of plantic, synthetic, and mixed fabrics of viscose rayon and cotton. The ACFs an exhibited type I isotherms on the adsorption of nitrogen or argon. Micropore analysis revealed that the ACFs have uniform micropore size distribution in which their peak diameters were in the range of $5.6{\pm}0.3{\AA}$. The BET surface area of ACFs up to $1600m^2g^{-1}$ was proportional to the adsorption capacity of iodine. The BET values of the ACFs prepared were proportional to the burn-off degree of the products.

  • PDF

Electro-chemical Removal Properties of Water Pollutants by Ag-ACF from Piggery Waste

  • Oh, Won-Chun;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • The electro-chemical removal (ECR) of water pollutants by metal-ACF electrodes from wastewater was investigated over wide range of ECR time. The ECR capacities of metallic ACF electrodes were related to physical properties such as adsorption isotherm, surface area and pore size and to reaction time. Surface morphologies and elemental analysis for the metal supported ACFs after electro-catalytic reaction were investigated by scanning electron microscopy (SEM) and energy disperse X-ray (EDX) to explain the changes in adsorption properties. The IR spectra of metallic ACFs for the investigation of functional groups show that the electro-catalytic treatment is consequently associated with the removal of pollutants with the increasing surface reactivity of the activated carbon fibers. The metal-ACFs were electro-catalytically reacted to waste water to investigate the removal efficiency for the COD, T-N, $NH_4$-N, $NO_3$-N and $NO_2$-N. From these removal results of the piggery waste using metallic ACFs substrate, satisfactory removal performance was achieved. The removal efficiency of the metallic ACFs substrate was mainly determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

The Preparation of Antibacterial Activated Carbon fibers and Their Application (항균성 탄소섬유의 제조와 그의 응용)

  • 오원춘;김범수;장원철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • Upon the Preparation of activated carbon fiber(ACF) using chemical activation method and vapour activation method, the fiber obtained from the vapour activation method shows excellent surface Properties. The preparation of antibacterial activated carbon fiber was tried to open the new areas in application of carbon materials. The BET specific surface area and the average pore radius of the antibacterial ACFs were in the range of 844.27~1575.6 $cm^2$/g and 10.6~12.9 (equation omitted), respectively. From the adsorption studies on the antibacterial ACFs, typical Type I isotherms were obtained. And, from the SEM morphology results, it was observed that the surface of ACFs was partially coated by antibacterial materials after the treatment. Finally, from the antibacterial effects of antibacteral ACFs against E. coli, excellent antibacterial activity was shown. Concerning the above results, antibacterial ACFs can have wide application in the areas of sterilization, anti-fragrant. anti-insects.

  • PDF

Effect of Oxyfluorination of Activated Carbon Fibers on Adsorption of Benzene Gas Causing Sick House Syndrome (새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향)

  • Lim, Hyung Soon;Kim, Min-Ji;Kong, Eun Young;Jeong, Jin-do;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.312-317
    • /
    • 2018
  • In this study, activated carbon fibers (ACFs) were treated by oxy-fluorination to improve the adsorption property of benzene gas, one of the gases causing sick house syndrome. Surface properties and pore characteristics of oxyfluorinated activated carbon fibers were confirmed by X-ray photoelectron Spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and adsorption properties of benzene gas were evaluated by gas chromatography (GC). As a result of XPS data, it was confirmed that the fluorine functional groups on activated carbon fibers surface increased with increasing the fluorine partial pressure. The specific surface area of all samples decreased after the oxyfluorination treatment, but the micropore volume ratio increased when the fluorine partial pressure was at 0.1 bar. The oxyfluorinated activated carbon fibers adsorbed 100 ppm benzene gas for an 11 h, it was found that the adsorption efficiency of benzene gas was improved about twice as much as that of untreated ones.

NO Gas Sensing of ACFs Treated by E-beam Irradiation in H2O2 Solution (과산화수소 용액에 담지 된 활성탄소섬유의 전자선 조사에 따른 일산화질소 가스 감응)

  • LEE, SANGMIN;PARK, MI-SEON;JUNG, MIN-JUNG;LEE, YOUNG-SEAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.298-305
    • /
    • 2016
  • In this study, we treated pitch-based activated carbon fibers (ACFs) in hydrogen peroxide using electron beam (E-beam) irradiation to improve nitrogen monoxide (NO) sensing ability as an electrode material of gas sensor. The specific surface area of ACFs treated by E-beam irradiation with 400 kGy increased from $885m^2/g$ (pristine) to $1160m^2/g$ without any changes in structural property and functional group. The increase in specific surface area of the E-beam irradiated ACFs enhanced NO gas sensing properties such as response time and sensitivity. When the ACFs irradiated with 400 kGy, response time was remarkably reduced from 360 s to 210 s and sensitivity was increased by 4.5%, compared to the pristine ACFs. These results demonstrate convincingly that surface modification of ACFs using E-beam in hydrogen peroxide solution can enhance textural properties of ACFs and NO gas sensing ability of gas sensor at room temperature.

Adsorption of THMs and THM Precursors on Activated Carbon Fibers (섬유상활성탄에 의한 THMs 및 THMs 전구물질의 흡착특성)

  • Han, Myung-Ho;Lee, Jin-Sik;Yoon, Yi-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.121-130
    • /
    • 1996
  • Adsorption isotherms of three trihalomethanes(THMs: $CHCl_3$, $CHBrCl_2$ and $CHBr_2Cl$) and the other organics(p-chlorophenol and sucrose)on activated carbon fibers(ACFs) were measured. Adsorption capacities of the ACFs for these THMs were found to be comparable with or slightly larger than those of granular activated car bons(GACs) which have been widely used for trihalomethanes control in drinking water. Also, the breakthrough curve prediction was successfully carried out using a mathematical model on basis of the assumption that the adsorption equilibrium is instantaneously established when a THM solution contacts the ACF. In practice, THM removal from drinking water was investigated at water works using benchscale ACF adsorptJOn columns. The volume of water treated at a space velocity(SV) of about $100h^{-1}$ was approximately 40 l/g-ACF. The practical adsorption capacities of PCP and sucrose in column adsorption were in good agreement with those of theoretically calculated results using the batch adsorption measurments. And the saturation time model of these substrates in the columns was also agreed succesfully with practical measurments.

  • PDF

Electrochemical Properties of Activated Polyacrylonitrile/pitch Carbon Fibers Produced Using Electrospinning

  • Kim, Bo-Hye;Bui, Nhu-Ngoc;Yang, Kap-Seung;dela Cruz, Marilou E.;Ferraris, John P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1967-1972
    • /
    • 2009
  • The electrospinnability of pitch was improved by blending in a solution of polyacrylonitrile (PAN) resulting in the reduction of the average fiber diameter from 2000 to 750 nm. Activated carbon fibers (ACFs) derived by stabilization, carbonization and steam activation at 700, 800, and 900 ${^{\circ}C}$ of the PAN/pitch electrospun fibers for 60 min were investigated as electrodes for supercapacitors. The Brunauer, Emmett, Teller (BET) specific surface area ranged from 732 to 1877 $m^2g^{-1}$ and the specific capacitance from 75.5 to 143.5 $Fg^{-1}$, depending on the activation conditions. Electrodes from the electrospun web activated at 900 ${^{\circ}C}$ exhibited a particularly quick response showing a high frequency of 5.5 Hz at a phase angle of ‒$45^o$ of the impedance spectroscopy.