• Title/Summary/Keyword: activated carbon fibers (ACFs)

Search Result 64, Processing Time 0.025 seconds

Influence of Nickel Electroplating on Hydrogen Chloride Removal of Activated Carbon Fibers

  • Park, Soo-Jin;Jin, Sung-Yeol;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.186-190
    • /
    • 2004
  • In this work, a nickel metal (Ni) electroplating on the activated carbon fiber (Ni/ACFs) surfaces was carried out to remove the toxic hydrogen chloride (HCl) gas. The surface properties of the treated ACFs were determined by using nitrogen adsorption isotherms at 77 K, SEM, and X-ray diffraction (XRD) measurements. HCl removal efficiency was confirmed by a gas-detecting tube technique. As a result, the nickel metal contents on the ACF surfaces were increased with increasing the plating time. And, it was found that the specific surface area or the micropore volume of the ACFs studied was slightly decreased as increasing the plating time. Whereas, it was revealed that the HCl removal efficiency containing nickel metal showed higher efficiency values than that of untreated ACFs. These results indicated that the presence of nickel metal on the ACF surfaces played an important role in improving the HCl removal over the Ni/ACFs, due to the catalytic reactions between nickel and chlorine.

  • PDF

Preparation and Characterization of OXI-PAN Based Carbon Fibers Activated by Hydroxides (수산화물에 의해 활성화된 OXI-PAN계 섬유의 제조 및 특성)

  • Moon, Sook-Young;Han, Dong-Yun;Lee, Byung-Ha;Lim, Yun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.469-474
    • /
    • 2005
  • Activated Carbon Fibers (ACFs) are widely used as adsorbents in technologies related to pollution abatement due to their highly porous structure and large adsorption capacity. The porous structure and surface area of ACFs depends strongly on both the activation processes arid the nature .of the precursors. The chemical activation with hydroxides has recently been, of great interest as it permits the preparation of activated carbon fibers with highly developed porosity. In this work, OXI-PAN fiber used as precursor for the preparation of activated carbon fibers by chemical activation with KOH and NaOH. The affects of several activation conditions on the surface properties, pore size distribution and adsorption capacity of Ag ion and Iodine ion on ACFs studied.

Removal of Chromium by Activated Carbon Fibers Plated with Copper Metal

  • Park, Soo-Jin;Jung, Woo-Young
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • In this work, activated carbon fibers (ACFs) were plated with copper metal using electroless plating method and the effects of surface properties and pore structures on chromium adsorption properties were investigated. Surface properties of ACFs have been characterized using pH and acid/base values. BET data with $N_2$ adsorption were used to obtain the structural parameters of ACFs. The electroless copper plating did significantly lead to a decrease in the surface acidity or to an increase in the surface basicity of ACFs. However, all of the samples possessed a well-developed micropore. The adsorption capacity of Cr(III) for the electroless Cu-plated ACFs was higher than that of the as-received, whereas the adsorption capacity of Cr(VI) for the former was lower than that of the latter. The adsorption rate constants ($K_1$, $K_2$, and $K_3$) were also evaluated from chromium adsorption isotherms. It was found that $K_1$ constant for Cr(III) adsorption depended largely on surface basicity. The increase of Cr(III) adsorption and the decrease of Cr(VI) adsorption were attributed to the formation of metal oxides on ACFs, resulting in increasing the surface basicity.

  • PDF

Preparation and Application of ACFs Derived from the Petroleum Pitch and the Organometallic Compounds

  • Hong, Ik-Pyo;Ha, Baik-Hyon
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2002
  • Activated carbon fibers were prepared from the petroleum isotropic pitch and organometallic compounds. The metalsvwere dispersed uniformly in the ACFs. The specific surface area and pore size distributions of metal containing ACFsvwere measured. The mesopores of ACFs were developed by Co, Ni, and Mn metals addition and the catalytic reactivityvof ACFs'SOx removal was increased by adding Ni and Pd metals. It was found that the mesopores did not work forvthe improvement of catalytic reactivity of ACFs' SOx removal with the blank experiment using the metal removedvACFs.

  • PDF

Characterization of Activation of Various Carbon Fibers via Chemical Activation with KOH (KOH에 의한 활성화된 탄소섬유들의 활성화특성)

  • Lim, Yun-Soo;Moon, Sook-Young;Han, Dong-Yun;Lee, Byung-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • OXI-PAN fibers, Kynol fibers and rayon fibers were used as precursorsfor the preparation of activated carbon fibers (ACFs) by chemical activation with KOH at $800^{\circ}C$. The effects of different precursorfibers and fiber/KOH ratios on the final ACFs are discussed. The precursor fibers used are appropriate for the ACFs in a single stage pyrolysis process. The OXI-PAN fibers which were activated with KOH of 2.0M showed a specific surface area of $2328m^2/g$ however, loosed the fiber shape because of low yields. The Kynol fibers and Rayon fibers showed the high yields but the lower specific surface area of $900m^2/g$ and $774m^2/g$, respectively, at KOH of 1.5M. The OXI-PAN fibers which were activated with KOH of 1.5M have a specific surface area of $1028m^2/g$ and higher micro-pore volumes and lower yields rather than Kynol-1.5 and Rayon-1.5 samples. This phenomenon is because of higher chemical resistance of the Kynol and Rayon fibers rather than OXI-PAN fibers. However, the Kynol fibers were the best precursors on KOH activation at $800^{\circ}C$ considered carbon yields, surface areas and micropore volumes.

Surface Characterization of the Activated Carbon Fibers After Plasma Polymerization of Allylamine

  • Lu, Na;Tang, Shen;Ryu, Seung-Kon;Choi, Ho-Suk
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Plasma polymerization of allylamine subsequently after plasma pre-treatment was conducted on the activated carbon fibers (ACFs) for the immobilization of amine groups in the surface of ACFs. The change of structural properties of ACFs with respect to different polymerization conditions was investigated through BET method. The change of surface morphologies of ACFs with respect to different plasma polymerization power was also studied through AFM. It was found that the structural properties such as specific surface area and micropore volume could be optimized under certain plasma deposition conditions. It was reckoned that treatment and deposition showed adverse effect on plasma polymerization, in which the former developed the micro-structures of the ACFs and the latter tended to block the micro pores. The Fourier transform infrared spectroscopy (FTIR) revealed that the poly(allylamine) was successfully immobilized on the surface of ACFs and the amount of the deposited polymer layer was related to the plasma polymerization power. SEM results showed that the plasma deposited polymer layer were small and homogenously distributed. The size and the distribution of particles deposited were closely related to the plasma polymerization power, too.

  • PDF

NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers (전해 구리 도금된 활성탄소섬유에 의한 NO의 촉매 환원반응 메커니즘 연구)

  • Park, Soo-Jin;Jang, Yu-Sin;Kawasaki, Junjiro
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.664-668
    • /
    • 2002
  • In this work, the catalytic reduction mechanisms of NO over ACFs/copper prepared by electrolytic copper plating has been studied. It was found that copper content on carbon surfaces increased with increasing the plating time. However, a slightly gradual decrease of adsorption properties, such as, BET specific surface area, was observed in increasing the plating times within the range of well-developed micropore structures. As experimental results, nitric oxide was converted into the nitrogen and oxygen on ACFs and ACFs/copper catalyst surfaces at $500^{\circ}C$. Especially, the surfaces of ACFs/copper catalyst were found to scavenge the oxygen released by catalytic reduction of NO, which could be explained by the presence of another nitric oxide reduction mechanism between ACFs and ACFs/copper catalysts.

Surface Properties of HCl Modified Ag-ACFs

  • Oh, Won-Chun;Ko, Young-Shin
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.248-254
    • /
    • 2005
  • Silver impregnated activated carbon fibers were post-modified using hydrochloric acid. Adsorption behaviors, SEM morphologies, and functional groups for the silver impregnated ACFs were compared with those of post-modified ACFs. Adsorption isotherms were used to characterize $S_{BET}$, the pore structure and volume of silver-activated carbon fibers (ACFs) before and after acid post-treatment. In order to the reveal the causes of the differences surface states after the samples were washed with hydrochloric acid, outer surface and pore structure were investigated by SEM. And the type and quality of various functional groups were studied from FT-IR spectra and Boehm titration method. Finally, the quantitative properties in silver contents were also examined by EDX spectra.

  • PDF

Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(II)-TEM Study (이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(II)-TEM을 이용한 분석)

  • Roh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.749-755
    • /
    • 2003
  • A development of micropores of $CO_2$activated isotropic carbon fibers from TEM was observed. It was observed that the micropores of activated carbon fibers(ACFs) were consisted of slit-shaped pores(SP) and cylinder-shaped pores(CP). The SPs were formed between two parallel-carbon layers, and the CPs were formed at a place which is connected polygonally by more than two carbon layers. It was shown that the CPs of the ACFs were developed at high degree of burn-offs and at high activation temperature. The pore size distribution of the best ACF, which was observed at a highest value of specific surface area(3,495 $\m^2$/g), showed a continuous distribution in the range of about $4∼l5\AA$, and the median pore size was 6.7$\AA$. The super-high specific surface area of ACFs was found to be due to that the SPs were connected with a maximum size of 7∼8$\AA$ continuously, It is possible that the SPs should be formed in the ACFs in order to show super-high SSA.

Antibacterial Activity of Activated Carbon Fibers Containing Copper Metal (구리 함유 활성 탄소 섬유의 항균 특성)

  • 박수진;김병주;이종문
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • The polyacrylonitrile (PAN)-based activated carbon fibers (ACFs) containing copper metal were electrolytically prepared in introducing the antibacterial activity into ACFs. The antibacterial activity was investigated by dilution test against Staphylococous aureus (S. aureus; gram positive and virulence) and Klebsiella pnemoniae (K. pnumoniae: gram negative and avirulence). The micropore and textural properties of the ACFs containing copper metal were characterized by BET, t-plot, and H-K methods. The ACFs showed slight decreases in BET's specific surface area, micropore volume, and total pore volume as copper metal increased. However, the antibacterial activities of the ACFs were strongly increased against S. aureus as well as K. pnumoniae, which could be attributed to the presence of copper metal in CU/ACFs systems.