• Title/Summary/Keyword: activated calcium

Search Result 361, Processing Time 0.023 seconds

Effect of Calcium Entry Blockers on the Calcium Transport in the Isolated Sarcolemmal membrane from the Porcine Small Intestine (돼지 소장 평활근 세포막에서의 Calcium 이동에 미치는 Calcium entry blockers 의 영향)

  • Seok, Jeong-Ho;Lim, Jong-Ho;Lee, Jae-Heun
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.151-156
    • /
    • 1986
  • There are some evidence for the presence of more than one type of calcium channels. To investigate whether organic calcium antagonist sensitive calcium channels exist in the isolated sarcolemmal membrane, we prepared high KCl-loaded sarcolemmal vesicle from the procine small instine, and induced calcium transport by high $K^+$ concentration or by electrical stimulation after preincubation of KCl-loaded vesicle in the low potassium solution. Calcium transport induced by high $K^+$ concentration (84.7mM) was significantly increased (p<0.05), compared with that by low $K^+$ concentration (2.08 mM), and not inhibited by diltiazem $(10^{-6}\;M)$. Calcium transport was inactivated with time. By continuous electrical stimulation (3V, 15Hz, 25m see), calcium transport was markedly increased, and inhibited significantly by dilltiazem $(10^{-6}\;M)$ and nifedipine $(10^{-6}\;M)$ (p<0.005), compared with the value of control without electrical stimulation. Calcium transport by electrical stimulation was not inactivated with time for at least 2 min. From these results, it was concluded that there was organic calcium antagonist sensitive channel in the isolated intestinal sarcolemma membrane, which was activated by electrical stimulation.

  • PDF

Estimation of Strength and Pore Structure of Alkali-Activated Fire Protection Materials at High Temperature (고온에서의 알칼리 활성화 내화성 결합재의 강도 및 공극구조 평가)

  • Song, Hun;Kim, Young-Ho;Kim, Wan-Ki;So, Hyung-Suk
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.59-66
    • /
    • 2012
  • This study is interested in identifying the effectiveness of alkali-activated fire protection material compounds including the alkali-activator such as potassium hydroxide, sodium silicate and fly ash as the fire resistant finishing materials. Also, this paper is concerned with change in compressive strength and pore structure of the alkali-activated fire protection material at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. This study results show that compressive strength is rapidly degraded depending on a rise of heating temperature. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. However, alkali-activated fire protection material composed of potassium hydroxide, sodium silicate and fly ash has the thermal stability of the slight decrease of compressive strength and porosity at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate.

Properties of Alkali Activated MSWI (Municipal Solid Waste Incinerator) Ash Mortar (알칼리 활성화된 도시 폐기물 소각재 모르타르의 특성)

  • Jo Byung Wan;Koo Ja Kap;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development, composition variation of such chemicallyi-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H), The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a chemically-activator. Compressive strengths with values in the 40.5MFa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

  • PDF

Mechanical Hyperalgesia Induced by Blocking Calcium-activated Potassium Channels on Capsaicin-sensitive Afferent Fiber

  • Lee, Kyung-Hee;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.215-219
    • /
    • 2007
  • Small and large conductance $Ca^{2+}$-activated $K^+(SK_{Ca}\;and\;BK_{Ca})$ channels are implicated in the modulation of neuronal excitability. We investigated how changes in peripheral $K_{Ca}$ channel activity affect mechanical sensitivity as well as the afferent fiber type responsible for $K_{Ca}$ channel-induced mechanical sensitivity. Blockade of $SK_{Ca}$ and $BK_{Ca}$ channels induced a sustained decrease of mechanical threshold which was significantly attenuated by topical application of capsaicin onto afferent fiber and intraplantar injection of 1-ethyl-2-benzimidazolinone. NS1619 selectively attenuated the decrease of mechanical threshold induced by charybdotoxin, but not by apamin. Spontaneous flinching and paw thickness were not significantly different after $K_{Ca}$ channel blockade. These results suggest that mechanical sensitivity can be modulated by $K_{Ca}$ channels on capsaicin-sensitive afferent fibers.

Activated Rap1A Induces Osteoblastic Differentiation and Cell Adhesion

  • Kim, Hyeseon;Jeon, Taeck J.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • Rap1 is a key regulator of cell adhesion and migration. Although increasing evidence indicates that the Rap1 signaling pathway is involved in the process of bone remodeling, the mechanism by which Rap1 regulates osteoblastic differentiation and cell adhesion remains unknown. Here, we investigated the morphological characteristics and osteoblastic differentiation of cells expressing constitutively activated form of Rap1A (Rap1ACA) or Rap1 GTPase activating protein Rap1GAP and found that activated Rap1 induces osteoblastic differentiation and cell adhesion as well as cell spreading. When osteoblastic differentiation was induced, Rap1ACA cells showed considerably higher levels of calcium deposits than the wild-type and Rap1GAP-overexpressing cells did. Rap1ACA cells showed increased spreading and size, as well as strong cell adhesion and significantly decreased growth rates. F-actin staining using phalloidin revealed several thin thread-like filopodia around the protrusions in Rap1ACA cells, which possibly contribute to the increased cell adhesion.

Effects of the Fraction of Sambucus Williamsii, NNMBS 246, on Osteoblastic Differentiation

  • Kang, Soon-Il;Park, Jaesuh;Kwon, Il-Keun;Kim, Eun-Cheol
    • CELLMED
    • /
    • v.8 no.3
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone formation. The purpose of this study was to examine the effects of NNMBS 246 osteoblastic differentiation with associated signaling pathways. NNMBS 246 markedly increased alkaline phosphatase (ALP) activity and calcium nodule formation. Stimulation with NNMBS 246 not only increased the differentiation markers (ALP, OPN, OCN) level and transcription markers (RUNX2, Osterix) mRNA expression but also upregulated the ECM molecules and OPG mRNA expression. Treatments of NNMBS 246 downregulated MMPs (MMP-1, MMP-2, MMP-9), but RANKL mRNA expression. Furthermore, NNMBS 246 activated osteoblastic differentiation markers and formed calcium nodules in human periodontal ligament cells (hPDLCs) and cementoblast cells. NNMBS 246 induced phosphorylation of MAPKs, Akt, nuclear p65 and IkB-${\alpha}$. BMP-2/Smad and ${\beta}$-catenin signaling pathways were activated by NNMBS 246. Sirtinol (SIRT1 inhibitor) inhibited NNMBS 246-induced osteoblastic differentiation markers mRNA expression. These results suggested that NNMBS 246 has the potential to enhance osteoblastogenesis probably through the activation of BMP/Smad and ${\beta}$-catenin signal pathways, and SIRT1 plays as critical mediator in bone anabolic effect of NNMBS 246.

Action of Aconite on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (토끼 적혈구막의 NaK ATPase의 활성도에 대한 aconite의 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 1976
  • The action of aconite on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action of aconite on the ATPase activity. The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is stimulated by aconite, and the concentration of aconite for maximal activity is about 80 mg%. The pH optimum for the aconite sensitive component is 8.0. 2. The activating effect of aconite on the ATPase, with a given concentration of sodium in the medium, is increased by raising the potassium concentration but activity ratio is decreased. 3. The activating effect of aconite on the ATPase, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased. 4. The action of aconite on the ATPase activity is inhibited by calcium ions and the effect of inhibition is increased by small amounts of calcium but decreased by larger amounts. 5. The activating effect of aconite on the ATPase was not related to the sulfhydryl group of cysteine, the amino group of lysine, the hydroxyl group of threonine or the imidazole group of histidine. 6. The action of aconite on the ATPase activity is due to carboxyl group of the enzyme of NaK ATPase.

  • PDF

Effect of Saponin on Sodium-Potassium activated ATPase in Rabbit Red Cell Membrane (Saponin이 토끼 적혈구막의 $Na^{+}-K^{+}-ATPase$의 활성도에 미치는 영향)

  • Kang, Byoung-Nam;Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.8 no.1
    • /
    • pp.67-76
    • /
    • 1974
  • The effect of saponin on the sodium plus potassium activated ATPase activity was studied in the rabbit red cell ghosts and the experiments were also designed to determine the mechanism of action of saponin on the APTase activity. The following results were observed. 1. The ATPase activity of rabbit red cell ghosts is inhibited by low concentration of saponin but increased by high concentration. The activating effect of saponin on the $Na^{+}-K^{+}-ATPase$ activity is inhibited by ouabain but the stimulation of the $Mg^{++}-ATPase$ by high concentration of saponin is not inhibited by ouabain. 2. The activity ratio of $Na^{+}-K^{+}-ATPase$ by high concentration of saponin is decreased by raising the potassium concentration, and is increased by raising the sodium concentration. 3. The ATPase activity is increased by small amounts of calcium but inhibited by larger amounts. The activity ratio of the enzyme by saponin is decreased by raising the calcium concertration 4. The action on the ATPase activity was not related to the amino group of lysine, the hydroxyl group of threonine, the imidazole group of histidine, or the carboxyl group of aspartic acid. 5. The action of saponin on the ATPase activity is due to sulfhydryl group of the enzyme of $Na^{+}-K^{+}-ATPase$.

  • PDF

Action of Ascorbic acid on Sodium-Potassium activated ATPase in Red Cell Membrane (적혈구막의 NaK ATPase의 활성도에 대한 ascorbic acid의 작용)

  • Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.12 no.1_2
    • /
    • pp.15-23
    • /
    • 1978
  • The action of ascorbic acid on the sodium Plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated and the experiments were also designed to determine the mechanism of action if ascorbic acid on the ATPase activity The following results were observed. 1. The activity of the NaK ATPase from red cell membrane is stimulated by ascorbic acid and the concentration of ascorbic acid for maximal activity is about 8 mM. 2. The activating effect of ascorbic acid on the ATPase activaty, with a given concentration of sodium in the medium, is increased by raisins the potassium concentration but activity ratio is decreased. 3. The activating effect of ascorbic acid on the ATPase activity, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but activity ratio is decreased. 4. The action of ascorbic acid on the ATPase activity is stimulated by calcium ions and activity ratio is increased by raising the calcium concentration. 5. The activating effect of ascorbic acid on the ATPase activity was not related to the sulfhydryl group of cysteine or the hydroxyl group of threonine. 6. The activating effect of ascorbic acid on the ATPase activity is due to amino group and carboxyl group of the enzyme of NaK ATPase.

  • PDF