• Title/Summary/Keyword: action properties

Search Result 780, Processing Time 0.035 seconds

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.

Curcumin Induces Apoptosis and Inhibits Growth of Human Burkitt's Lymphoma in Xenograft Mouse Model

  • Li, Zai-xin;Ouyang, Ke-qing;Jiang, Xv;Wang, Dong;Hu, Yinghe
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.283-289
    • /
    • 2009
  • Curcumin, a natural compound extracted from rhizomes of curcuma Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor and anti-oxidative properties. However, the mechanism of action of the compound remains poorly understood. In this report, we have analyzed the effects of curcumin on the cell proliferation of Burkitt's lymphoma Raji cells. The results demonstrated that curcumin could effectively inhibit the growth of Raji cells in a dose- and time-dependent manner. Further studies indicated that curcumin treatment resulted in apoptosis of cells. Biochemical analysis showed that the expression of Bax, Bid and cytochrome C were up-regulated, while the expression of oncogene c-Myc was down regulated after curcumin treatment. Furthermore, poly (ADP-ribose) polymerase (PARP) cleavage was induced by the compound. Interestingly, the antiapoptotic Bcl-2 expression was not significantly changed in Raji cells after curcumin treatment. These results suggested that the mechanism of action of curcumin was to induce mitochondrial damage and therefore led to Raji cell apoptosis. We further investigated the in vivo effects of curcumin on the growth of xenograft tumors in nude mice. The results showed that curcumin could effectively inhibit tumor growth in the xenograft mouse model. The overall results showed that curcumin could suppress the growth of Burkitt's lymphoma cells in both in vitro and in vivo systems.

Anti-Cancer Effects of Green Tea by Either Anti- or Pro-Oxidative Mechanisms

  • Hayakawa, Sumio;Saito, Kieko;Miyoshi, Noriyuki;Ohishi, Tomokazu;Oishi, Yumiko;Miyoshi, Mamoru;Nakamura, Yoriyuki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1649-1654
    • /
    • 2016
  • Tea derived from the leaves and buds of Camellia sinensis (Theaceae) is consumed worldwide. Green tea contains various components with specific health-promoting effects, and is believed to exert protective effects against diseases including cancer, diabetes and hepatitis, as well as obesity. Of the various tea components, the polyphenol catechins have been the subject of extensive investigation and among the catechins, (-)-epigallocatechin gallate has the strongest bioactivity in most cases. Our research group has postulated that hepatocyte nuclear factor-$4{\alpha}$, sterol regulatory element-binding proteins, and tumor necrosis factor-${\alpha}$ are targets of green tea constituents including (-)-epigallocatechin gallate for their anti-diabetes, anti-obesity, and anti-hepatitis effects, respectively. Published papers were reviewed to determine whether the observed changes in these factors can be correlated with anti-cancer effects of green tea. Two major action mechanisms of (-)-epigallocatechin gallate have been proposed; one associated with its anti-oxidative properties and the other with its pro-oxidative activity. When reactive oxygen species are assumed to be involved, our findings that (-)-epigallocatechin gallate downregulated hepatocyte nuclear factor-$4{\alpha}$, sterol regulatory element-binding proteins, and tumor necrosis factor-${\alpha}$ may explain the anti-cancer effect of green tea as well. However, further studies are required to elucidate which determinant directs (-)-epigallocatechin gallate action as an anti-oxidant or a pro-oxidant for favorable activity.

Antiinflammatory Activity of the Medicinal Plant Geum Japonicum

  • Kang, Soon-Ah;Shin, Ho-Jung;Choi, Sung-Eun;Yune, Kyung-Ah;Lee, Sun-Joo;Jang, Ki-Hyo;Lim, Yoong-Ho;Cho, Kang-Jin
    • Nutritional Sciences
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2006
  • G. japonicum is a perennial hem and the flowering plant has been used as a diuretic and an astringent in Japan and China. However, little information is available about the anti-inflammatory action of G. japonicum. Therefore, the objective of this study was to investigate the antiinflammatory action of fractions from G. japonicum methanol extract. Inhibition of NO production was observed when cells were cotreated with fractions of G. japonicum and lipopolysaccharide. We observed that ethyl acetate fraction of G. japonicum inhibited NO production by LPS-activated RAW 264.7 cells, and that the suppression induced by ethyl acetate fraction of G. japonicum was associated with antioxidant activity and direct NO clearance. In addition, only ethyl acetate fraction of G. japonicum inhibited stimulated $PGE_2,\;TNF-\alpha,\;IL-1\beta$ production, whereas water and methyl chloride fractions showed no such effects. The ethyl acetate fraction of G. japonicum methanol extract showed a remarkable scavenging activity on the 1,1-diphenyl-2 picrylhydrazyl radical. Based on the results, ethyl acetate fraction of G. japonicum may be useful source as natural antioxidants and antiinflammation. Therefore, the results obtained from this study provide an alternative protective mechanism of ethyl acetate fraction of G. japonicum and provide information on the potential use of ethyl acetate fraction of G. japonicum in chemoprevention or pathogenic conditions related to overproduction of NO and $PGE_2$. However, the mechanism of the inflammatory effect must be evaluated through various parameters for induction of NO production.

Effects of α1-adrenoceptor stimulation on ventricular electrophysiological properties of guinea pigs (기니픽 심근의 전기생리학적 특성에 미치는 α1-Adrenoceptor 자극효과)

  • Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.2
    • /
    • pp.199-209
    • /
    • 1993
  • The effects of ${\alpha}_1$-adrenergic stimulation on membrane potential, intracellular sodium activity $(a_N{^i{_a}})$, and contractility were investigated in the isolated papillary muscle of euthyroid, hyperthyroid, and hypothyroid guinea pigs. Cardiac alterations in the thyroid state have been shown to induce marked changes in action potential characteristics, the most pronounced shortening of action potential duration by hyperthyroidism and an increase in duration by hypothyroidism. $10^{-5}M$ Phenylephrine produced a decrease in $(a_N{^i{_a}})$ in euthyroid and hypothyroid preparations, but an increase in $(a_N{^i{_a}})$ in hyperthyroid ones. The major findings were that phenylephrine produced a stronger positive inotropic effect(PIE) without initial negative inotropic effect(NIE) in hyperthyroid preparations, while phenylephrine produced markedly NIE in hypothyroid ones. The alterations in membrane potential, $(a_N{^i{_a}})$, and contractility were abolished by $3{\times}10^{-5}M$ prazosin in hypothyroidism. In hypothyroid ventricular muscle, the decrease in $(a_N{^i{_a}})$ caused by phenylephrine were not abolished or reduced by $10^{-5}M$ strophanthidin, $10^{-5}M$ TTX, $3{\times}10^{-4}M$ lidocaine, or $100^{-5}M$ verapamil. These results indicate that the ${\alpha}_1$-adrenoceptor-mediated decrease in $(a_N{^i{_a}})$ is not associated with a stimulation of the $Na^+$-$K^+$ pump, inhibition of the $Na^+$ or $Ca^+$ channel in hypothyroid ventricular muscle. $10^{-5}M$ Phenylephrine decreased $(a_N{^i{_a}})$ but increased $(a_N{^i{_a}})$ in the presence of a PKC activator phorbol dibutyrate$(PDB_u)$. In conclusion, it is suggested that the following sequence of events in response to phenyleplhane occur in guinea pig ventricular muscle. First, changes in thyroid state may contribute to the ventacular electrophysiological propeties or ion transport system. Second, the adrenoceptor-mediated initial transient NIE may be associated with the decrease in $(a_N{^i{_a}})$ by PKC activation.

  • PDF

Anti-Diabetic Effects of an Ethanol Extract of Cassia Abbreviata Stem Bark on Diabetic Rats and Possible Mechanism of Its Action - Anti-diabetic Properties of Cassia abbreviata -

  • Bati, Keagile;Kwape, Tebogo Elvis;Chaturvedi, Padmaja
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • Objectives: This study aimed to evaluate the hypoglycemic effects of an ethanol extract of Cassia abbreviata (ECA) bark and the possible mechanisms of its action in diabetic albino rats. Methods: ECA was prepared by soaking the powdered plant material in 70% ethanol. It was filtered and made solvent-free by evaporation on a rotary evaporator. Type 2 diabetes was induced in albino rats by injecting 35 mg/kg body weight (bw) of streptozotocin after having fed the rats a high-fat diet for 2 weeks. Diabetic rats were divided into ECA-150, ECA-300 and Metformin (MET)-180 groups, where the numbers are the doses in mg.kg.bw administered to the groups. Normal (NC) and diabetic (DC) controls were given distilled water. The animals had their fasting blood glucose levels and body weights determined every 7 days for 21 days. Oral glucose tolerance tests (OGTTs) were carried out in all animals at the beginning and the end of the experiment. Liver and kidney samples were harvested for glucose 6 phosphatase (G6Pase) and hexokinase activity analyses. Small intestines and diaphragms from normal rats were used for ${\alpha}-glucosidase$ and glucose uptake studies against the extract. Results: Two doses, 150 and 300 mg/kg bw, significantly reduced the fasting blood glucose levels in diabetic rats and helped them maintain normal body weights. The glucose level in DC rats significantly increased while their body weights decreased. The 150 mg/kg bw dose significantly increased hexokinase and decreased G6Pase activities in the liver and the kidneys. ECA inhibited ${\alpha}-glucosidase$ activity and promoted glucose uptake in the rats' hemi-diaphragms. Conclusion: This study revealed that ECA normalized blood glucose levels and body weights in type 2 diabetic rats. The normalization of the glucose levels may possibly be due to inhibition of ${\alpha}-glucosidase$, decreased G6Pase activity, increased hexokinase activity and improved glucose uptake by muscle tissues.

Formulation and Pharmacokinetic Evaluation of Sustained Release Preparation Containing Clebopride Malate (말산클레보프리드 서방성 제제의 제조 및 약물동태학적 평가)

  • Ryou, Hae-Won;Lee, Joo-Han;Chi, Yong-Ha;Hahn, Yang-Hee;Tan, Hyun-Kwang;Lee, Kyu-Heung;Kim, Sang-Lin;Jeon, Seung-Yoon;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.179-189
    • /
    • 2000
  • Clebopride malate(Cm) is a new benzamide drug which has a potent central antidopaminergic activity possessing antiemetic and anxiolytic properties. A purpose of this study was to assess the feasibility of formulating sustained release preparation by dispersing a drug in hydrophilic polymeric matrices and double layered tablets(DLT), using HPMC, carbopol, PEO, PVP/VA and other polymers as a rate controlling barrier. The matrix and DLT showed optimum dissolution pattern up to 8 hours and the contents of polymer were optimized at 30% level in this preparation. After an oral administration in beagle dog, Cm concentration was determined by use of GC-ECD and pharmacokinetic parameters were calculated by Vallner's method. The AUC of DLT showed similar results and the duration of action was increased 55% compared to that of regular release dosage form. The calculated absorption rate effectiveness(ARE) and controlled release effectiveness(CRE) for DLT increased 50% compared to that of matrix, the overall effectiveness(E) of this product appears to be about 70%. in vivo effectiveness test, DLT showed significant differences from control on antiemetic action of Cm. In consequence, it was possible to conclude that double layered tablet might be a good candidate for the sustained release dosage forms.

  • PDF

A Study on the Diverse Roles of Sugar in Confectionery and Bread-making. (제빵 제과에 다양한 설탕 이용에 관한 연구)

  • 이명호
    • Culinary science and hospitality research
    • /
    • v.4
    • /
    • pp.249-269
    • /
    • 1998
  • What satisfies the desire of human beings about taste most easily is sweet taste, and it has seemed that the pronoun of sweet taste is sugar. Sugar is used in confectionery and bread-making essentially, and it has influence on the structure and touch of baked confectionery. In addition, if we soften the and apply heat, coloring is made. Thus, it colors good. It doesn't have a sweet taste, but it has the effect to emit fragrance variously, balance and soften the product. The kinds of sugar are very diverse, and it is sugar to be referred to as white sugar is used most frequently. In this study, this researcher examined the classification of physicochemical property and melting point etc. of sugar in confectionery and bread-making through theoretical study, about the simple classification of sugar. In addition, this researcher approached about the role of sugar in confectionery and bread-making and about the influence to have when it is more or less than proper quantity, centering around function. As the result, this researcher extracted the importance of sugar in confectionery and bread-making. It means that the increase of 5% of sugar quantity decreases the absorption quantity of moisture by 1% in bread-making and that the excess of 8% of sugar slow the action of yeast in straight method. Besides, there are the properties such as absorptive property, permeability, storage nature, aging prevention of starch, oxidation restraint of oils and fats, the gelation action of pectin, the fermentation acceleration of yeast, and the emulsification-maintaining-nautre and antiseptics effect of fat-soluble material. And in confectionery, sugar makes fragrance and peel color, increases the storage nature with moisture maintenance and has the softening effect. So, it is considered that the attitude to study and make efforts continuously on the basis of the role of sugar will have to be unfolded in confectionery and bread-making.

  • PDF

Immuno-regulatory and Anti-cancer Effect of Acorus gramineus Solander (석창포(石菖蒲)의 면역조절 및 항암효과)

  • Kim, Nam-Seok;Lee, Kyu-Hee;Kim, Tae-Ho;Bae, Jin-Bum;Kim, Sun-Geun;Jeon, Hoon;Lim, Jong-Phil;Shin, Tae-Yong;Lee, Chang-Hyun;Jeong, Seung-Il;Kwon, Jin;Oh, Chan-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.869-873
    • /
    • 2007
  • Methanol extracts of Acorus gramineus Solander(AGS) were found to exhibit immuno-regulatory action in BALB/c mice. Oral administration of AGS increased murine splenic T lymphocytes, especially $T_H$ and $T_C/T_S$ subpopulations were increased significantly. Treatment of AGS exerted strong cytotoxicity against U937 and HL60 human leukemia cells. Also, AGS induced apoptosis of U937 leukemia cells in a dose dependent manner. Nitric oxide(NO) production and iNOS gene expression were also increased in AGS-treated RAW264.7 cells. Treatment of AGS increased the expression of p53 gene and decreased the expression of PCNA protein in cultured U937 cells. These data suggest that AGS are effective on the immuno-regulatory action and anti-cancer properties.

Quercetin-induced Growth Inhibition in Human Bladder Cancer Cells Is Associated with an Increase in $Ca^{2+}$-activated $K^+$ Channels

  • Kim, Yang-Mi;Kim, Wun-Jae;Cha, Eun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.279-283
    • /
    • 2011
  • Quercetin (3,3',4',5,7-pentahydroxyflavone) is an attractive therapeutic flavonoid for cancer treatment because of its beneficial properties including apoptotic, antioxidant, and antiproliferative effects on cancer cells. However, the exact mechanism of action of quercetin on ion channel modulation is poorly understood in bladder cancer 253J cells. In this study, we demonstrated that large conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) or MaxiK channels were functionally expressed in 253J cells, and quercetin increased $BK_{Ca}$ current in a concentration dependent and reversible manner using a whole cell patch configuration. The half maximal activation concentration ($IC_{50}$) of quercetin was $45.5{\pm}7.2{\mu}m$. The quercetin-evoked $BK_{Ca}$ current was inhibited by tetraethylammonium (TEA; 5 mM) a non-specific $BK_{Ca}$ blocker and iberiotoxin (IBX; 100 nM) a $BK_{Ca}$-specific blocker. Quercetin-induced membrane hyperpolarization was measured by fluorescence-activated cell sorting (FACS) with voltage sensitive dye, bis (1,3-dibutylbarbituric acid) trimethine oxonol ($DiBAC_4$2(3); 100 nM). Quercetin-evoked hyperpolarization was prevented by TEA. Quercetin produced an antiproliferative effect ($30.3{\pm}13.5%$) which was recovered to $53.3{\pm}10.5%$ and $72.9{\pm}3.7%$ by TEA and IBX, respectively. Taken together our results indicate that activation of $BK_{Ca}$ channels may be considered an important target related to the action of quercetin on human bladder cancer cells.