• 제목/요약/키워드: actinomycin

검색결과 93건 처리시간 0.026초

Forskolin-Induced Stimulation of RGS2 mRNA in C6 Astrocytoma Cells

  • Kim Sung-Dae;Cho Jae-Youl;Park Hwa-Jin;Kim Sang-Keun;Rhee Man-Hee
    • 대한의생명과학회지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2006
  • RGS is a negative regulator of G-protein signaling and can be identified by the presence of a conserved $120{sim}125$ amino acid motif, which is referred to as the RGS box. A number of RGSs are induced in response to a wide variety of stimuli. Increased levels of RGSs lead to significant decreases in GPCR responsiveness. To obtain further evidence of a role of RGS proteins in rat C6 astrocytoma cells, we first determined the expression profile of RGS-specific mRNA in C6 cells using reverse transcription-polymerase chain reaction (RT-PCR) with a poly dT18 primer and transcript-specific primers. We found that RGS2, RGS3, RGS6, RGS9, RGS10, RGS12, and RGS16 were differentially expressed in C6 astrocytoma cells. The highest expression rate was found for RGS3, followed by RGS16, RGS10 and RGS9, whereas the expression level for RGS2 was barely detectable. We next assessed whether forskolin regulated the expression of RGSs expressed in C6 astrocytoma cells. The present study found that forskolin dose-dependently stimulated the expression of RGS2 transcripts. This up-regulation of RGS2 gene was abrogated by H-89, potent and broad-spectrum protein kinase A (PKA) inhibitors. Actinomycin D completely inhibited the up-regulation of RGS2 gene induced by forskolin $(10{\mu}M)$, indicating that the regulation of RGS2 gene is controlled at the transcriptional level. In addition, forskolin did significantly activate transcriptional cAMP response element (CRE) in either HEK 293 cells or C6 cells and did not modulate the $NF-{\kappa}B$ and AP-l activity as measured by luciferase reporter gene assay. Finally, forskolin induced the expression of RGS2 mRNA in C6 astrocytoma cells, which depend on the PKA pathway and CRE transcriptional pathways.

  • PDF

Pathophysiological Implication of Ganglioside GM3 in Early Mouse Embryonic Development through Apoptosis

  • Ju Eun-Jin;Kwak Dong-Hoon;Lee Dae-Hoon;Kim Sung-Min;Kim Ji-Su;Kim Sun-Mi;Choi Han-Gil;Jung Kyu-Yong;Lee Seo-ul;Do Su-Il;Park Young-Il;Choo Young-Kug
    • Archives of Pharmacal Research
    • /
    • 제28권9호
    • /
    • pp.1057-1064
    • /
    • 2005
  • Apoptosis may occur in early embryos where the execution of essential developmental events has failed, and gangliosides, sialic acid-conjugated glycosphingolipids, are proposed to regulate cell differentiation and growth. To evaluate the regulatory roles of ganglioside GM3 in early embryonic development, this study examined its expressional patterns in apoptotic cells during early embryonic development in mice. Pre-implanted embryos were obtained by in vitro fertilization, which were treated at the 4-cell stage with three the apoptosis inducers, actinomycin D, camptothecin and cycloheximide, for 15 h. All three inducers significantly increased the percentage of apoptotic cells, as measured using a TUNEL method, but remarkably reduced the total cell numbers. The numbers of morula and blastocyst stages were significantly decreased by treatment of the embryos with the three apoptosis inducers compared with the control, with a similar result also observed in the number of blastomeres. Staining of early embryos with Hoechst 33342 revealed a significant percentage of apoptotic nuclei. Prominent immunofluo­rescence microscopy revealed a significant difference in the ganglioside GM3 expression in apoptotic embryos compared with the control, and RT-PCR also demonstrated a dramatic increase in ganglioside GM3 synthase mRNA in the apoptotic embryos. These results suggest that ganglioside GM3 may be pathophysiologically implicated in the regulation of early embryonic development through an apoptotic mechanism.

늑간근에 발생한 폐포성 횡문 근육종 1례 보고 (One Case of Alveolar Rhabdomyosareoma arising from Intercostal Muscle)

  • 김선한
    • Journal of Chest Surgery
    • /
    • 제25권6호
    • /
    • pp.598-604
    • /
    • 1992
  • Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood and acounts for 6% to 15% of all cases of childhood cancer, Rhabdomyosarcoma in seventh most common form of childhood neoplasms, following acute leukemia, tumors of the central nervous system, lymphoma neuroblastoma, Wilm`s tumor, bone tumor. Rhabdomyosarcoma can arise anywhere in the body, but primary site in the thorax is relatively rare. We experienced a case of aveolar rhabdomyosarcoma arising from intercostal muscle, A 12 year-old woman was suffered from the intermittent left chest pain radiating to the scapular area and dyspnea, On physical examination, pulmonary friction rub was heard on the left upper lobe area. Qn adimission, the chest simple radiography revealed a 7 x 6, 5cm sized radio-opaque mass with pleural effusion in the superior mediastinum and the CT showed a well difined radio-opaque mass including the destructed 2nd rib and pleural effusion. The percutaneous tra-nsthoracic needle aspiration biopsy was likely to show blastoma. After the chemotherapy[vincristine, actinomycin-D, cyclophosphamde] was done to treat blastoma, the pleural effussion was subsided and the mass was slightly decreased by 4.5x 4. 5cm. For treatment and diagnosis, we performed en-bloc resection and the defected chest was reconstucted with Gortex patch. Grossly, the specimen was colored graysh-white and arised in between two ribs The microscopic findings showed that the tumor cells were small round with scant pinkish cytoplasm on the H-E stain and the tumor cell nests were grouped by reticulum fibers and showed alveolar pattern on the silver stain The electromicroscopic finding presented that the cytoplasm contained tangled fibrillar and flocculent materials. The histopathologic findings were compatable with laveolar rhabdomyosarcoma. She was discharged without any complication. After discharge, she has been treated with radiation theraphy and chemotheraphy, and not recurred untill last follow-up We report a case of alveolar rhabdomyosarcoma arising to intercostal muscle, developed in 12 year-old waman, with brief review of literatures.

  • PDF

Human Chorionic Gonadotropin (hCG) Regression Curve for Predicting Response to EMA/CO (Etoposide, Methotrexate, Actinomycin D, Cyclophosphamide and Vincristine) Regimen in Gestational Trophoblastic Neoplasia

  • Rattanaburi, Athithan;Boonyapipat, Sathana;Supasinth, Yuthasak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.5037-5041
    • /
    • 2015
  • Background: An hCG regression curve has been used to predict the natural history and response to chemotherapy in gestational trophoblastic disease. We constructed hCG regression curves in high-risk gestational trophoblastic neoplasia (GTN) treated with EMA/CO and identified an optimal hCG level to detect EMA/CO resistance in GTN. Materials and Methods: Eighty-one women with GTN treated with EMA/CO were classified as primary high-risk GTN (n = 65) and single agent-resistance GTN (n = 16). The hCG levels prior to each course of chemotherapy were plotted in the 10th, 50th, and 90th percentiles to construct the hCG regression curves. Diagnostic performance was evaluated for an optimal cut-off value. Results: The median hCG levels were 264,482 mIU/mL mIU/mL and 495.5 mIU/mL mIU/mL for primary high-risk GTN and single agent-resistance GTN, respectively. The 50th percentile of the hCG level in primary high-risk GTN and single agent-resistance turned to normal before the 4th and the 2nd course of chemotherapy, respectively. The 90th percentile of the hCG level in primary high-risk GTN and single agent-resistance turned to normal before the 9th and the 2nd course of chemotherapy, respectively. The hCG level of ${\geq}118.6mIU/mL$ mIU/mL at the 5thcourse of EMA/CO predicted the EMA/CO resistance in primary high-risk GTN patients with a sensitivity of 85.7% and a specificity of 100%. Conclusion: EMA/CO resistance in primary high-risk GTN can be predicted by using an hCG regression curve in combination with the cut-off value of 118.6 mIU/mL at the 5thcourse of chemotherapy.

The IGFBP-1 mRNA Expression in HepG2 Cells is Affected by Inhibition of Heme Biosynthesis

  • Park, Jong-Hwan;Park, Tae-Kyu;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.385-389
    • /
    • 2001
  • Insulin-like growth factor binding protein-1 (IGFBP-1) appears to be an important modular of the insulin growth factor (IGF) bioactivity in metabolic disease and chronic hypoxia. Treatment of desferrioxamine (Dfo), cobalt, or nickel in HepG2 cells stimulated the expression of IGFBP1 mRNA as hypoxia. However, the presence of ferric ammonium citrate (FAC) in the 1% $O_2$ decreased the upregulation of the IGFBP-1 mRNA expression. In addition, actinomycin D and cycloheximide abolished the increase in the expression of IGFBP-1 mRNA that was induced by Dfo and transition metals (cobalt and nickel). To obtain further information about the putative oxygen sensor, we postulate that putative heme proteins, responsible for the oxygen-sensing process in HepG2 cells, should be sensitive to hypoada. The mechanism of these upregulations of the IGFBP-1 mRNA expression by Dfo and transition metals was investigated by treatment with 2 mM of 4,6-dioxoheptanoic acid (DHA), an inhibitor of heme biosynthesis. The results showed that 1% $O_2$-, Dfo-, cobalt-, or nickel induced IGFBP-1 mRNA expressions in HepG2 cells were all markedly inhibited when the heme synthesis was blocked by DHA. We suggest that the IGFBP-1 mRNA expression in the HepG2 cell is regulated by 1% $O_2$, Dfo, cobalt, or nickel, implicating the involvement of the putative heme-containing oxygensensing molecule.

  • PDF

Regulation of HMG-CoA Reductase mRNA Stability by 25-hydroxycholesterol

  • Park, Jae-Won;Oh, Seung-Min
    • Preventive Nutrition and Food Science
    • /
    • 제5권4호
    • /
    • pp.184-188
    • /
    • 2000
  • HMG-CoA reductase is th rate-limiting enzyme of cholesterol biosynthesis. As intracellular levels of cholesterol should be regulated elaborately in response to external stimuli an internal needs, the expression of the HMG-CoA reductase gene is regulated intricately at several different levels from transcription to post-translational modification. In this study, we investigated the regulatory mechanism of HMG-CoA reductase gene expression at the post-transcriptional/pre-translational levels in a baby hamster kidney cell line, C100. when 25-hydroxycholesterol was added to cells cultured in medium containing 5% delipidized fetal bovine serum and 25$\mu$M lovastatin, the levels of HMG-CoA reductase mRNA decreased rapidly, which seemed to be due to the increased degradation of reductase mRNA. These suppressive effects of 25-hydroxycholesterol on MG-CoA reductase mRNA levels were blocked by a translation inhibitor, cycloheximide. Similarly, actinomycin D and 5,6-dichloro-1-$\beta$-D-ribofuranosylbenzimidazole, transcription inhibitors, blocked the 25-hydroxycholesterol-mediated degradation of HMG-CoA reductase mRNA. These results indicate that new protein/RNA synthesis is required for the degradation of HMG-CoA reductase mRNA. In addition, data from the transfection experiments shows that cis-acting determinants, regulating the stability of reductase mRNA, were scattered in the sequence corresponding to 1766-4313 based on the sequence of Syrian hamster HMG-CoA reductase cDNA. Our data suggests that sterol-mediated destabilization of reductase mRNA might be one of the important regulatory mechanism of HMG-CoA reductase gene expression.

  • PDF

Studies on the Activation Mechanism of c-src Protein Tyrosine Kinase by Ginsenoside-Rgl

  • Hong, Hee-Youn;Yoo, Gyung-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • 제22권2호
    • /
    • pp.133-139
    • /
    • 1998
  • We have studied an activation mechanism of $pp60^{c-src}$ protein tyroslne kinase (PTK) by ginsenoside-$Rg_1$ (G-$Rg_1$ ) in NIH(pMcsrc/foc)B c-src overexpressor cells. It was previously reported that G--$Rg_1$ stimulated the activation of c-src kinase at 20 pM with a 18 hr-incubation, increasing the activity by 2-4-fold over that of untreated control, and this effect was blocked by treatments of in- hibitors of either protein synthesis (cycloheximide) or RNA synthesis (actinomycin D) (Hong, H.Y. et at. Arch. Pharm. Res. 16, 114 (1993)). However, an amount of c-src protein itself in wild-type cells was not changed by G-$Rg_1$. When the cells mutated at one or two tyrosine residue(s) (Y416/527) that are important sites to regulate the kinase activity were treated with G-$Rg_1$, increases both in the activity of c-src kinase and in the expression of the protein were not observed. In addition, removal of extracellular calcium ion by EGTA or inhibition of PKC by H-7 canceled the G-$Rg_1$-induced activation of the kinase. Although the activation was little affected by G-$Rg_1$ with a calcium ionophore A23187, it was synergistically stimulated by treatment of G-Rgl and PMA, a PKC activator. Taken together, these results suggest that the activation of c-src kinase by G-$Rg_1$ is caused by an increase in the specific activity of the kinase, but not in amount of it, and is involved with both collular calcium ion and PKC. Further the increase in the specific activity of c-src kinase may result from altered phosphorylation at tyro-416 and -527.

  • PDF

갑상선자극호르몬에 의한 분자\ulcorner페론 ERp29 유전자의 발현 (A Gene Encoding Endoplasmic Reticulum Resident 29 kDa Protein is Regulated by TSH-Dependently at the Transcription Level)

  • 박수정;이웅희;구태원;윤은영;황재삼;김호;송민호;권오규
    • 생명과학회지
    • /
    • 제10권2호
    • /
    • pp.150-156
    • /
    • 2000
  • This experiment was performed to evaluate the effect of TSH (thyroid-stimulating) on the ERp29 (endoplasmic reticulum resident 29 kDa protein) gene expression in the rat thyrocytes of FRTL-5 cells. Although ERp29 mRNA was constantly expressed, its expression began to increase remarkably from 10-9 M TSH. and its maximum expression was at 5×10-9 M TSH (about 3.5 fold). On the other hand, the effect of TSH on the abundance of ERp29 mRNA started within 6 h, and peaked at 8 h (about 2.5 fold). Actinomycin D (transcription inhibitor) strongly blocked this effect while cycloheximide (translation inhibitor) did not. The half-life of ERp29 mRNA was about 4.5 h in the presence or absence of TSH that was not affected by the stability of ERp29 mRNA. The effect of TSH on the ERp29 gene expression was specific, while other growth factors (transfferin, insulin, and hydrocortisone) did not alter its expression. Our data indicate for the first time that the expression of ERp29 is regulated transcriptionally by TSH in the thyrocytes.

  • PDF

Peroxiredoxin 3 Has Important Roles on Arsenic Trioxide Induced Apoptosis in Human Acute Promyelocytic Leukemia Cell Line via Hyperoxidation of Mitochondrial Specific Reactive Oxygen Species

  • Mun, Yeung-Chul;Ahn, Jee Young;Yoo, Eun Sun;Lee, Kyoung Eun;Nam, Eun Mi;Huh, Jungwon;Woo, Hyun Ae;Rhee, Sue Goo;Seong, Chu Myong
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.813-820
    • /
    • 2020
  • NB4 cell, the human acute promyelocytic leukemia (APL) cell line, was treated with various concentrations of arsenic trioxide (ATO) to induce apoptosis, measured by staining with 7-amino-actinomycin D (7-AAD) by flow cytometry. 2', 7'-dichlorodihydro-fluorescein-diacetate (DCF-DA) and MitoSOX™ Red mitochondrial superoxide indicator were used to detect intracellular and mitochondrial reactive oxygen species (ROS). The steady-state level of SO2 (Cysteine sulfinic acid, Cys-SO2H) form for peroxiredoxin 3 (PRX3) was measured by a western blot. To evaluate the effect of sulfiredoxin 1 depletion, NB4 cells were transfected with small interfering RNA and analyzed for their influence on ROS, redox enzymes, and apoptosis. The mitochondrial ROS of NB4 cells significantly increased after ATO treatment. NB4 cell apoptosis after ATO treatment increased in a time-dependent manner. Increased SO2 form and dimeric PRX3 were observed as a hyperoxidation reaction in NB4 cells post-ATO treatment, in concordance with mitochondrial ROS accumulation. Sulfiredoxin 1 expression is downregulated by small interfering RNA transfection, which potentiated mitochondrial ROS generation and cell growth arrest in ATO-treated NB4 cells. Our results indicate that ATO-induced ROS generation in APL cell mitochondria is attributable to PRX3 hyperoxidation as well as dimerized PRX3 accumulation, subsequently triggering apoptosis. The downregulation of sulfiredoxin 1 could amplify apoptosis in ATO-treated APL cells.

Phosphoinositide 3-kinase regulates myogenin expression at both the transcriptional and post-transcriptional level during myogenesis

  • Woo, Joo-Hong;Kim, Min-Jeong;Kim, Hye-Sun
    • Animal cells and systems
    • /
    • 제14권3호
    • /
    • pp.147-154
    • /
    • 2010
  • It is well-established that phosphoinositide 3-kinase (PI3-kinase) regulates myogenesis by inducing transcription of myogenin, a key muscle regulatory factor, at the initiation of myoblast differentiation. In this study, we investigated the role of PI3-kinase in cells that have committed to differentiation. PI3-kinase activity increases during myogenesis, and this increase is sustained during the myogenic process; however, its function after the induction of differentiation has not been investigated. We show that LY294002, a PI3-kinase inhibitor, blocked myoblast fusion even after myogenin expression initially increased. In contrast to the inhibitory effects of LY294002 on myogenin mRNA levels during the initiation of differentiation, LY294002 blocked the accumulation of myogenin protein without affecting its mRNA level after differentiation was induced. Treatment with cycloheximide, a translation inhibitor, or actinomycin D, a transcription inhibitor, indicated that the stability of myogenin protein is lower than that of its mRNA. LY294002 inhibited the activities of several important translation factors, including eukaryotic elongation factor-2(eEF2), by altering their phosphorylation status. In addition, LY294002 blocked the incorporation of [$^{35}S$]methionine into newly synthesized proteins. Since myogenin has a relatively short half-life, LY294002-mediated inhibition of post-transcriptional processes resulted in a rapid depletion of myogenin protein. In summary, these results suggest that PI3-kinase plays an important role in regulating the expression of myogenin through post-transcriptional mechanisms after differentiation has been induced.