• Title/Summary/Keyword: acting force

Search Result 857, Processing Time 0.03 seconds

Experimental Investigation of the Hydrodynamic Force Acting on Ship Hull and Rudder in Various Wave Direction

  • Nguyen, Van Minh;Nguyen, Tien Thua;Seo, Juwon;Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.105-114
    • /
    • 2018
  • In the past, traditional methods of research on ship maneuvering performance were estimated in calm waters. However, the course-keeping ability and the maneuvering performance of a ship can be influenced by the presence of waves. Therefore, it is necessary to understand the maneuvering behavior of a ship in waves. In this study, the force acting on a moving ship and a rudder behind the model ship will be performed in regular waves in Changwon National University (CWNU). In addition, the prediction force acting on the rudder in calm waters was carried out and compared with those of Computational Fluid Dynamics (CFD). Model test in regular wave was performed to predict the force acting on the ship and the rudder behind the model ship in various wave directions. The effects of wavelength and wave direction on hydrodynamic forces acting on the ship hull versus rudder angle is discussed.

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (유한요소법을 이용한 고속응답 솔레노이드 밸브의 거동해석)

  • Kwon, Ki-Tae;Han, Hwa-Taik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.927-932
    • /
    • 2001
  • It is intended to develope an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

  • PDF

A Study of Dynamic Characteristic far Resistance Spot Welding Process Using Servo-gun System (서보건 이용 시 저항 점 용접의 동특성 분석에 관한 연구)

  • Baek Jung-Yeub;Lee Jong-Gu;Rhee Se-Hun
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.40-46
    • /
    • 2005
  • Air gun has been one of the good tools to press two sheet metals. However, it is not easy to control the acting force precisely. A Servo-gun is a good tool to control the acting force on the workpiece comparing with the air gun. Servo-gun has a higher tensile shear strength and lower indentation depth as well as smaller spatter. Dynamic resistance was obtained according to the acting force and welding current. As the acting force was changed during welding, the welding quality was increased.

Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method (비정상 유한요소법을 이용한 고속응답 솔레노이드 밸브의 동적거동해석)

  • Kweon, Gi-Tae;Han, Hwa-Taik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.959-965
    • /
    • 2002
  • It is intended to develop an algorithm for dynamic simulation of a fast-acting solenoid valve. The coupled equations of electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balance acting on the plunger, which includes the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

Free Surface Suction Force Acting on a Submerged Slender Body Moving Beneath a Free Surface (자유수면 밑을 전진하는 세장체에 작용하는 수면흡입력의 추정)

  • Yoon, Bum-Sang;Trung, Dam Vam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.688-698
    • /
    • 2009
  • In this paper, the steady lift force acting on a slender body moving beneath regular wave systems of arbitrary wavelengths and directions of propagation is considered. The momentum conservation theorem and the strip method are used to obtain the hydrodynamic forces acting on the body and affecting its motions on the assumption that the body is slender. In order to obtain the vertical steady force acting on it, or the free surface suction force, the second-order hydrodynamic forces caused by mutual interactions between the components of the first-order hydrodynamic forces are averaged over time. The validity of the method is tested by comparison of the calculated results with experimental data and found to be satisfactory. Through some parametric calculations performed for a typical model, some useful results are obtained as to the depth of submergence of the body, wavelengths, directions, etc.

Wave Exciting Forces Acting on Ships in Following Seas (추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究))

  • Kyoung-Ho,Son;Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

Force acting on a high Tc superconductor at 77K

  • Kim, Yong-Kweon;Katsural, Makoto;Fujita, Hiroyuki
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.87-90
    • /
    • 1989
  • The force acting on high Tc superconductors at 77K is measured and analyzed numerically. Both values are compared, and the difference between them is discussed. The forces, acting on a superconducting disk (thickness:1[mm], diameter:12[mm]) in an axially-symmetric magnetic field produced by a solenoid or a permanent magnet ring, are measured at 77K. The disk is an YBCO high Tc superconductor. The discrete surface current method(DSCM) is formalized for an axially-symmetric magnetic field. The forces of the superconducting disk in the magnetic field are analyzed using the DSCM, assuming that the disk is a perfect diamagnetic body. When the bottom side of the disk is separated 8[mm] from the top side of the solenoid, and the magnetic field applied on the center of the bottom side of the disk is 96[G], the measured value and the calculated value of the force are 96 and 496[mgf], respectively. The difference between them is caused by a non-perfect diamagnetism of the high Tc superconductor at 77K. It is proposed that a real force acting on high Tc superconductors at 77K can be estimated on the basis of a measured magnetic susceptibility of the high Tc superconductor at 77K and a calculated force of a perfect diamagnetic body.

  • PDF

The Characteristics of Friction in Direct Acting OHC Valve Train System (직접 구동형 OHC 밸브 트레인 시스템의 마찰 특성)

  • 한동철;조명래
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.23-27
    • /
    • 1998
  • The characteristics of friction in direct acting OHC vane train system have been investigated by the comparison of experimental and theoretical results. A modified friction model was presented to calculate the friction force at cam/tappet contact. A simple experimental system was evaluated to measure the friction force and the camshaft driving torque. The friction force was measured by using the dynamic loadcell. Good agreement was found between theoretical and experimental results in friction force, but there was a little difference in driving torque.

A Study on Acting Forces on the Vane of Vane Pump used for Vehicles′ Hydraulic Power Steering (차량용 HPS 베인펌프의 베인의 작용력에 관한 연구)

  • 정석훈;오석형
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.163-167
    • /
    • 2004
  • Reducing friction torque of the oil hydraulic vane pump used as the power source of power steering system should consider friction torque including viscous and mechanical friction torque according to the changes of rpm and pressure. This paper analyzes the forces acting on the vane to reduce the friction torque of the vane of the hydraulic vane pump used for Hydraulic Power Steering(HPS) system, and futhermore, the forces according to the shapes of cam profiles are analyzed.

Assessment of External Force Acting on Ship Using Big Data in Maritime Traffic (해상교통 빅데이터에 의한 선박에 작용하는 외력영향 평가에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.379-384
    • /
    • 2013
  • For effective ship management in VTS(Vessel Traffic Service), it needs to assess the external force acting on ship. Big data in maritime traffic can be roughly categorized into two groups. One is the traffic information including ship's particulars. The other is the external force information e.g., wind, sea wave, tidal current. This paper proposes the method to assess the external force acting on ship using big data in maritime traffic. To approach Big data in maritime traffic, we propose the Waterway External Force Code(WEF code) which consist of wind, wave, tidal and current information, Speed Over the Water(SOW) of each ship, weather information. As a results, the external force acting a navigating ship is estimated.