• Title/Summary/Keyword: acrylonitrile

Search Result 416, Processing Time 0.027 seconds

Methanol Electro-Oxidation Properties of Pt Electro-Catalysts Embedded by Porous Carbon Nanofiber Supports (다공성 탄소나노섬유 지지체에 담지된 백금촉매의 메탄올 산화 특성 연구)

  • Sin, Dong-Yo;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2015
  • To improve the methanol electro-oxidation in direct methanol fuel cells(DMFCs), Pt electrocatalysts embedded on porous carbon nanofibers(CNFs) were synthesized by electrospinning followed by a reduction method. To fabricate the porous CNFs, we prepared three types of porous CNFs using three different amount of a styrene-co-acrylonitrile(SAN) polymer: 0.2 wt%, 0.5 wt%, and 1 wt%, respectively. A SAN polymer, which provides vacant spaces in porous CNFs, was decomposed and burn out during the carbonization. The structure and morphology of the samples were examined using field emission scanning electron microscopy and transmission electron microscopy and their surface area were measured using the Brunauer-Emmett-Teller(BET). The crystallinities and chemical compositions of the samples were examined using X-ray diffraction and X-ray photoelectron spectroscopy. The electrochemical properties on the methanol electro-oxidation were characterized using cyclic voltammetry and chronoamperometry. Pt electrocatalysts embedded on porous CNFs containing 0.5 wt% SAN polymer exhibited the improved methanol oxidation and electrocatalytic stability compared to Pt/conventional CNFs and commercial Pt/C(40 wt% Pt on Vulcan carbon, E-TEK).

The Interaction for the pit formation on ABS with laser beam (레이저에 의한 ABS의 홈 형성에 동반되는 상호작용)

  • Kim Youngseop;Park Sohee;Shin Yongjin
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2004.10a
    • /
    • pp.22-28
    • /
    • 2004
  • Pit and rim formation on the Acrylonitrile Butadiene Styrene(ABS) plastic surface was evaluated after it was irradiated by $CO_2$ and Nd:YAG laser beams. Our results show that thermal effect floor was well observed at the outer wall of pit with $CO_2$ laser irradiated while it was not the case with Nd:YAG laser irradiated. Also the volume and depth of pit formation increase proportionally with the energy intensities of two laser irradiations, but there are significant differences in the slope, width, and FWHM of the Pit formation with two types of laser irradiations. This result shows that $CO_2$ laser irradiation leads to better cooling contraction effect while Nd:YAG laser irradiation induces better recoil pressure effect during the interaction between ABS plastic and laser beam irradiation. The shape of the laser marking could vary significantly depending on the traveling path of molten plastic during injection molding of ABS plastic. Therefore, the selection of material and molding process can have a great impact on the performance of optical storage media.

  • PDF

Hybrid (CNC+Laser) Process for Polymer Welding (하이브리드 방식 (CNC+Laser)을 이용한 폴리머용접공정)

  • Yoo, Jong-Gi;Lee, Choon-Woo;Choi, Hae-Woon
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.42-48
    • /
    • 2010
  • Polycarbonate (PC) and Acrylonitrile Butadiene Styrene (ABS) were welded by a combination of a diode laser and a CNC machining center. Laser beam delivered through the transparent PC and was absorbed in an opaque ABS. Polymers were melted and joined by absorbed and conducted heat. Experiments were carried out by varying working distance from 44mm to 50mm for the focus spot diameter control, laser input power from 10W to 25W, and scanning speed from 100 to 400mm/min. The weld bead and cross-section were analyzed for weld quality, and tensile results were presented through the joint force measurement. With focus distance at 48mm, laser power with 20W, and welding speed at 300mm/min, experimental results showed the best welding quality which bead size was measured to be 3.75mm. The shear strength at the given condition was $22.8N/mm^2$. Considering tensile strength of ABS is $43N/mm^2$, shear strength was sufficient to hold two materials. A single process was possible in a CNC machining system, surface processing, hole machining and welding. As a result, the process cycle time was reduced to 25%. Compared to a typical process, specimens were fabricated in a single process, with high precision.

Development of primary reference gas mixtures of 18 volatile organic compounds in hazardous air pollutants (5 nmol/mol level) and their analytical methods

  • Kang, Ji Hwan;Kim, Yong Doo;Lee, Jinhong;Lee, Sangil
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.202-211
    • /
    • 2021
  • Volatile organic compounds (VOCs) in hazardous air pollutants (HAPs) have been regulated by the Air Pollution Control Act (1978) and their atmospheric concentrations have been monitored in 39 monitor sites in Korea. However, measurement standards of volatile organic compounds (VOCs) in HAPs at ambient levels have not been established in Korea. Primary reference gas mixtures (measurement standards) at ambient levels are required for accurately monitoring atmospheric VOCs in HAPs and managing their emissions. In this study, primary reference gas mixtures (PRMs) at 5 nmol/mol were developed in order to establish primary national standards of VOCs in HAPs at ambient levels. Primary reference gas mixtures (PRMs) were prepared in pressurized aluminum cylinders with special internal surface treatment using gravimetric method. Analytical methods using gas chromatography-flame ionization detector (GC-FID) coupled with a cryogenic preconcentrator were also developed to verify the consistency of gravimetrically prepared HAP VOCs PRMs. Three different columns installed in the GC-FID were evaluated and compared for the retention times and separation of eighteen target components in a chromatogram. Results show that the HAP VOCs PRMs at 5 nmol/mol were consistent within a relative expanded uncertainty (k=2) of less than 3 % except acrylonitrile (less than 6 %) and the 18 VOCs were stable for 1 year within their associated uncertainties.

Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials

  • Kueh, Ahmad B.H.;Tan, Chun-Yean;Yahya, Mohd Yazid;Wahit, Mat Uzir
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.105-117
    • /
    • 2022
  • Impact resistance efficiency of the newly designed sandwich beam with a laterally arched core as bio-inspired by the woodpecker is numerically investigated. The principal components of the beam comprise a dual-core system sandwiched by the top and bottom laminated CFRP skins. Different materials, including hot melt adhesive, high-density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), epoxy resin (EPON862), aluminum (Al6061), and mild carbon steel (AISI1018), are considered for the side-arched core layer of the beam for impact efficiency assessment. The aluminum honeycomb takes the role of the second core. Contact force, stress, damage formation, and impact energy for beams equipped with different materials are examined. A diversity in performance superiority is noticed in each of these indicators for different core materials. Therefore, for overall performance appraisal, the impact resistance efficiency index, which covers several chief impact performance parameters, of each sandwich beam is computed and compared. The impact resistance efficiency index of the structure equipped with the AISI1018 core is found to be the highest, about 3-10 times greater than other specimens, thus demonstrating its efficacy as the optimal material for the bio-inspired dual-core sandwich beam system.

Plasma Etching and Polymerization of Carbon Fiber (플라즈마 에칭과 중합에 의한 탄소섬유의 표면 개질)

  • H. M. Kang;Kim, N. I.;T. H. Yoon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.143-146
    • /
    • 2002
  • Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance adhesion to vinyl ester resin. The gases utilized for the plasma etching were Ar, $N_2 and O_2$, while the monomers used for the plasma polymerization coating were acetylene, butadiene and acrylonitrile. The conditions for the plasma etching and the plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Among the treatment conditions, the combination of Ar plasma etching and acetylene plasma polymerization provided greatly improved interfacial shear strength (IFSS) of 69MPa compared to 43MPa with as-received carbon fiber. Based on the SEM analysis of failure surface and load-displacement curve, it was assume that the failure might be occurred at the carbon fiber and plasma polymer coating. The plasma etched and plasma polymer coated carbon fibers were subjected to analysis with SEM, XPS, FT-IR or Alpha-Step, and dynamic contact angles and tensile strengths were also evaluated. Plasma polymer coatings did not change tensile strength and surface roughness of fibers, but decreased water contact angle except butadiene plasma polymer coating, possibly owing to the functional groups introduced, as evidenced by FT-IR and XPS.

  • PDF

Fabrication and characterization of disposable golf tees using biodegradable polymer through 3D printing

  • Jihyuk Jung;Kwang Sun Huh;Jungho Jae;Kwang Se Lee
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • Many studies have been conducted on the indiscriminate use of plastic due to the environment problems it has caused all over the world. This problem can be mitigated by using eco-friendly/biodegradable plastics that can be decomposed by microorganisms or enzymes. This study focused on addressing the plastic golf tees that are thrown away at golf courses. In order to replace conventional golf tees (ABS) with a more eco-friendly alternative, this study explored a biodegradable plastic and 3D printing method for producing golf tees. Among the biodegradable plastics, PLA (polylactic acid) was found to be a good candidate as an eco-friendly material because it is biodegradable by microorganisms. Thus, golf tees were prepared by using PLA via 3D printing, and the physical and chemical properties of the tees were evaluated. The amorphous region of PLA was confirmed through XRD. Also, FT-IR showed the unique peak of PLA without impurities. It was confirmed through an optical microscope that the specific surface area and roughness had increased. This structure plays a role in firmly fixing the golf tee when it is inserted into the ground. In addition, it was possible to improve the compressive load compared to ABS golf tees while also decreasing the compressive stretching.

Optimization of FSW of Nano-silica-reinforced ABS T-Joint using a Box-Behnken Design (BBD)

  • Mahyar Motamedi Kouchaksarai ;Yasser Rostamiyan
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • This experimental study investigated friction stir welding (FSW) of the acrylonitrile-butadiene-styrene (ABS) T-joint in the presence of various nano-silica levels. This study aim to handle the drawbacks of the friction stir welding (FSW) of an ABS T-joint with various quantity of nanoparticles and assess the performance of nanoparticles in the welded joint. Moreover, the relationship between the nanoparticle quantity and FSW was analyzed using response surface methodology (RSM) Box-Behnken design. The input parameters were the tool rotation speed (400, 600, 800 rpm), the transverse speed (20, 30, 40 mm/min), and the nano-silica level (0.8, 1.6, 2.4 g). The tensile strength of the prepared specimens was determined by the universal testing machine. Silica nanoparticles were used to improve the mechanical properties (the tensile strength) of ABS and investigate the effect of various FSW parameters on the ABS T-joint. The results of Box-Behnken RSM revealed that sound joints with desired characteristics and efficiency are fabricated at tool rotation speed 755 rpm, transverse speed 20 mm/min, and nano-silica level 2.4 g. The scanning electron microscope (SEM) images revealed the crucial role of silica nanoparticles in reinforcing the ABS T-joint. The SEM images also indicated a decrease in the nanoparticle size by the tool rotation, leading to the filling and improvement of seams formed during FSW of the ABS T-joint.

Rheological and mechanical properties of ABS/PC blends

  • Khan M.M.K.;Liang R.F.;Gupta R.K.;Agarwal S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Acrylonitrile-Butadiene-Styrene (ABS), polycarbonate (PC) and their alloys are an important class of engineering thermoplastics that are widely used for automotive industry, computer and equipment housings. For the process of recycling mixtures of ABS and PC, it is desirable to know how sensitive the blend properties are to changes in compositions. It was for this reason that blends of virgin ABS and virgin PC at five different compositions, namely, $15\%,\;30\%,\;50\%,\;70%$ and $85\%$ by weight of ABS were prepared and characterised by rheological and mechanical measurements. Rheological properties of these blends in steady, oscillatory and transient step shear and mechanical properties, namely, tensile strength, elongation-at-break and Izod impact strength are reported. The results show that PC behaves in a relatively Newtonian manner, but ABS exhibits significant shear thinning. The ABS-rich blends show a trend that is similar to that of ABS, while PC-rich blends, namely $0\%$ and $15\%$, exhibit a nearly Newtonian behaviour. However, at a fixed shear rate or frequency, the steady shear or the dynamic viscosity varied respectively in a non-mono-tonic manner with composition. Except for $15\%$ blend, the viscosities of other blends fall into a narrow band indicating a wide-operation window of varying blend ratio. The blends exhibited a lower viscosity than either of the two pure components. The other noticeable feature was that the blends at $70\%$ and $85\%$ ABS content had a higher G' than pure ABS, indicating an enhancement of elastic effect. The tensile yield strength of the blends followed the 'rule of mixtures' showing a decreasing value with the increase of ABS content in PC. However, the elongation-at-break and the impact strength did not appear to obey this 'rule of mixtures,' which suggests that morphology of the blends also plays a significant role in determining the properties. Indeed, scanning electron micrographs of the fracture surfaces of the different blends validate this hypothesis, and the $15\%$ blend is seen to have the most distinct morphology and correspondingly different behaviour and properties.

종이의 유전 특성 향상을 위한 표면 사이즈제의 열적 안정성 및 유동현상 평가

  • 이학래;서만석
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.53-53
    • /
    • 2001
  • 종이의 전기적 성질 가운데 유전율은 전기장에 대한 종이의 물리화학적인 반응으로 일반적으로 종이의 밀도와 종이를 구성하는 성분의 쌍극자 모멘트에 비례하며 온도에 따라서도 변화한다. 일반적으로 온도가 상승하면 열에너지를 얻게된 쌍극자가 전기장에 배열됨으로써 유전율이 상승하지만 온도가 유리전이점 이상으로 높아질 경우에는 열적 교란에 의해서 분극능력이 감소하게 되어 유전완화 현상이 나타난다. 전기절연지로 사 용될 종이의 절연특성을 이해하기 위해서는 사용환경에 따른 유전적 특성 및 tan 0에 관한 연구가 필요하며 필름형성능력이 우수한 polyvinyl a1cohoHPV A)와 acrylonitrile을 이용하여 시아노에틸화한 PYA의 표면처리에 의해 종이의 유전적 특성이 향상되었음을 기존의 연구를 통하여 확인할 수 있었다. 본 연구에서는 전기절연지가 사용되는 환경조건에서 PYA를 기본물질로하는 유전필름 의 열적 안정성을 평가하였으며, 아울러 표면사이징 공정에서의 적용성 검토를 위하여 용액의 유동특성을 분석하였다. 유전특성 향상을 위해서는 표면 사이즈제의 유도체화 과정에서 쌍극자 모벤트의 밀도 증가를 통한 유전율 향상이 요청되며 이와 동시에 네트원 구조를 통하여 전기장에 대 한 물리적 특성이 유지되어야 한다. 본 연구에서는 W AXD( wide angle x-ray diffraction)를 이용하여 시아노에틸화 반응 과 고온에서의 열화에 의한 필름의 결정화도를 평가하였으며 온도 상승에 따른 흡열 피크의 변화를 통하여 온도 변화에 따른 PYA 분자구조의 변화와 유리전이온도의 추이 를 분석하였다. 또 열화과정에서 수반되는 필름의 중량감소율을 평가함으로써 열안정성 을 평가하였다. 그 결과 시아노에틸화한 PYA가 안정된 분자구조를 유지하고 있음을 확인할 수 있었다. 시아노에틸화한 PYA용액의 점탄성 평가를 위하여 storage modulus와 loss modulus 를 분석하였다. 일반적 유변특성 평가 결과 PYA용액은 shear-thinning, pseudoplastic 한 특성을 나타내어 표면사이즈 공정에서의 적용 가능성을 확인할 수 있었다.

  • PDF