• Title/Summary/Keyword: acrylic frame

Search Result 22, Processing Time 0.021 seconds

External Fixation with Acrylic Frame in Forelimb Fracture of Korean Native Two Calves (한우송아지의 전지골절에서 아크릴릭 프레임을 이용한 외부고정)

  • Shin, Sang-Min;Lee, Dong-Bin;Lee, Hae-Beom;Kim, Min-Su;Ji, Joong-Ryong;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.179-182
    • /
    • 2011
  • Two day-old male and 1 month-old female Hanwoo calves presented to Chonbuk Animal Medical Center in Chonbuk National University. Two calves were stepped by mother cow and had right (2 day-old male) and left (1 month-old female) forelimb lameness. The male calf was diagnosed as right radius-ulnar fracture through physical and radiographic examination. The other female calf was diagnosed as left third and fourth metacarpal bone fracture by the same examinations as male calf. Acrylic frame external fixator was used to reduce the fractures. Arcrylic frame external fixator in two calves lasted for 5~6 weeks. After removing the acrylic frame external fixator, radiographic evaluation and physical examination were performed. Fractured radius-ulnar and metacarpal bones were unionized and the calves were able to stand and bear weight. In these two calves, application of acrylic frame external fixator in calf fracture was effective. Acrylic frame external fixator should be considered for the repair of radius-ulnar and metacarpal bone fracture in calf.

Development of Gas-mask Spectacles (방독면 안경 개발)

  • Lee, Jeung-Young;Parkm Jeong-Sik;Jang, Woo-Yeong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.4
    • /
    • pp.9-12
    • /
    • 2008
  • Purpose: Current gas-mask is very uncomfortable structure for spectacles wearer. Improving this problem can aid military men and firemen to protect themselves and rescue other person. Methods: we changed the structure from dual type of outward lens and inward lens into a single type structure. we attached acrylic frame to gas-mask instead of outward lens and protected the gas inflow by shutting the gab of lens and frame using silicon shield, and made the frame "S" style for removing astigmatism and maintaining of vertex distance. Results: It was possible to correct visual acuity and gas shield, and could changed the lens like a common spectacles. The new type of gas-mask spectacles could remove 0.53D~1.78D astigmatism occurred from the slant of eyesight and lens surface, 0.07D~0.66D overcorrection occurred from short vertex distance, and 0.1D~0.3D astigmatism occurred from pantoscopic angle. Conclusion: Because new type of gas-mask spectacles had clear visual field, it was expected to improve fighting power and rescue ability.

  • PDF

Field Application of Protopype LEFC Applied With Photocatalys (광촉매 적용 감성콘크리트 시작품 현장적용)

  • Kim, Byoung-Il;Oh, Sang-Keun;Park, Hyun-Ho;Kim, Soo-Yeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.152-153
    • /
    • 2021
  • Various types of panels can be designed using acrylic rods, which are materials that allow light to pass through existing concrete. After designing using people, animals and objects, a prototype was produced by mixing ultra-high-strength concrete, and taking care not to damage the fixed acrylic rod during pouring and demolding. Yun Dong-ju's free design of a figure and a researcher were inserted into the wall inside the interior space, and then the installation was completed on-site. For installation, a metal frame was installed on the temporary wall, which is a non-structural wall, and then a relatively heavy concrete panel was fixed using a structural sealant and then applied to the field.

  • PDF

Development of A Fractionated Stereotactic Radiotherapy System (분할 정위방사선 치료 시스템 개발 연구)

  • 이동한;지영훈;이동훈;조철구;김미숙;유형준;류성렬
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • We invented the newly developed Fractionated Stereotactic Radiotherapy(F.S.R.T) system using combined techniques of couch mounting and pedestal mounting system. Head fixation frame consists of a milled alluminium alloy(duralumin) and is placed to the couch. This frame immobilized patient head using the dental bite, 3.2 mm frontal and occipital thermoplastic mask. To evaluate the coordinate of target isocenter, Brown-Revert-Walls C.T localizer can be attached to this frame. And also, we developed the frame mounting system by developing the modification of pedestal mounting system. This system is fixed to couch floor and can be used to evaluate the isocenteric accuracy of gantry, couch and collimator in Q.A procedure. In order to measure the relocation accuracy, the acrylic phantom and the accurate pointers have been made. The repositioning of the targets in the phantom were estimated by comparing C.T coordinates and E.C.L portal films taken with anterior-posterior and right-left direction. From the results of experiments, the average distance errors between the target isocenter and its mean position were 0.71$\pm$0.19 for lateral, 0.45$\pm$0.15 for inferior-superior, 0.63$\pm$0.18 for anterior-posterior. And the maximum distance error was less than 1.3 mm. The new head fixation frame and frame mounting system were non-invasive, accurately relocatable, easy to use, very light and well tolerable by the results of phantom tests. The major advantage of using this frame mounting system is complete access to any point in the Patients cranium especially posterior direction

  • PDF

Accuracy of image registration for radiation treatment planning using a brain phantom

  • Jin, Ho-Sang;Suh, Tae-Suk;Song, Ju-Young;Juh, Ra-Hyeong;Kwark, Chul-Eun;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.106-106
    • /
    • 2002
  • Purpose: The purposes of our study are (1) to develop a brain phantom which can be used for multimodal image registration, (2) to evaluate the accuracy of image registration with the home-made phantom. Method: A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using chamfer matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods for CT, MR imaging and Pb rods for SPECT imaging. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process.

  • PDF

A new way to design and construct a laminar box for studying structure-foundation-soil interaction

  • Qin, X.;Cheung, W.M.;Chouw, N.
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.521-532
    • /
    • 2019
  • This paper describes the construction of a laminar box for simulating the earthquake response of soil and structures. The confinement of soil in the transverse direction does not rely on the laminar frame but is instead achieved by two acrylic glass walls. These walls allow the behaviour of soil during an earthquake to be directly observed in future study. The laminar box was used to study the response of soil with structure-footing-soil interaction (SFSI). A single degree-of-freedom (SDOF) structure and a rigid structure, both free standing on the soil, were utilised. The total mass and footing size of the SDOF and rigid structures were the same. The results show that SFSI considering the SDOF structure can affect the soil surface movements and acceleration of the soil at different depths. The acceleration developed at the footing of the SDOF structure is also different from the surface acceleration of free-field soil.

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • The korean journal of orthodontics
    • /
    • v.53 no.4
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Flow Visualization in the Branching Duct by Using Particle Imaging Velocimetry (입자영상유속계를 이용한 분기관내 유동가시화)

  • No, Hyeong-Un;Seo, Sang-Ho;Yu, Sang-Sin
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • The objective of this study is to analyse the flow field in the branching duct by visualizing the flow phenomena using the PIV system. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. Water was used as the working fluid and the conifer powder as the tracer particles. The single-frame and two-frame methods of the PIV system and 2-frame of the grey level correlation method are applied to obtain the velocity vectors from the images captured in the flow filed. The velocity distributions in a lid-driven cavity flow are compared with the so-called standard experimental data, which was obtained from by 4-frame method in order to validate experimental results of the PIV measurements. The flow patterns of a Newtonian fluid in a branching duct were successfully visualized by using the PIV system and the sub-pixel and the area interpolation method were used to obtain the final velocity vectors. The velocity vectors obtained from the PIV system are in good agreement with the numerical results of the 3-dimensional branch flow. The results of numerical analyses and the PIV experiments for the three-dimensional flows in the branch ing duct show the recirculation zone distal to the branching point and the sizes of the recirculation length and height of the tow different methods are in good agreement.

  • PDF