• Title/Summary/Keyword: acrylic acid, amidase

Search Result 2, Processing Time 0.013 seconds

Isolation of a Pseudomonas aeruginosa Strain Capable of Degrading Acrylamide

  • Arvind, Kumar;Kumar, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.347-352
    • /
    • 1998
  • A new strain of Pseudomonas aeruginosa growing in a rice field contaminated with herbicide and effluents of a factory manufacturing explosives was isolated. This isolate showed excellent growth in unusually high concentration of acrylamide (60 mM). It utilized acrylamide as the sole source of carbon and nitrogen for growth. Other amides such as acetamide, butyramide, isobutyramide, and methacrylamide were also utilized for the growth by this isolate. Acrylamide was degraded into acrylic acid and ammonia by the enzyme amidase. More than $65\%$ of added acrylamide (40 mM) was converted into acrylic acid after 40 h of growth of the culture. Amidase activity was inducible, the highest activity being observed with isobutyramide ($12.5{\mu}M$ ammonia/mg protein/min). These results demonstrate that this bacterium can degrade a variety of amides.

  • PDF

Isolation ref Brevibacterium sp. CH1 and Properties of Its Enzyme (Brevibacterium sp. CH1의 분리 및 특성)

  • 장호남;이처영;황준식
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 1989
  • A bacterial strain of Brevibaterium sp. CH1 was isolated and used to produce an enzyme (nitrile hydratase) necessary for earring out the bioconversion of acrylonitrile to acrylamide. The culture and reaction conditions, and medium optimization were studied for the strain. The conversion yield was nearly 100% with a trace amount of acrylic acid produced. The strain showed strong activity of nitrile hydratase toward acrylonitrile and extremely low activity of the amidase toward acrylamide. We sought optimum culture conditions for the formation of nitrile hydratase by Brevibacterium sp. CH1. The effects of temperature and pH on the activity of free and immobilized tells were investigated. The nitrite hydratase of Brevibacterium sp. CH1 acted not only on various aliphatic nitrites such as acrylonitrile, propionitrile and acetonitrile, but also on aromatic nitrile as nicotinonitrile.

  • PDF