• Title/Summary/Keyword: acousto-ultrasonics

Search Result 2, Processing Time 0.018 seconds

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints (복합재료-금속 접착접합부의 피로손상의 실시간 평가기법)

  • Kwon, Oh-Yang;Kim, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.439-447
    • /
    • 1999
  • One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction ($E/E_o$) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures.

  • PDF